Industry Comparison

You are viewing information about the following Industries:

  • Iron & Steel Producers The Iron & Steel Producers industry primarily consists of entities producing iron and steel in mills and foundries. The steel producers segment produces iron and steel products from its own mills. These products include flat-rolled sheets, tin plates, pipes, tubes, and products made of stainless steel, titanium and high alloy steels. Iron and steel foundries, which cast various products, typically purchase iron and steel from other entities. The industry also includes metal service centres and other metal merchant wholesalers, which distribute, import or export ferrous products. Though entities are developing alternative processes, steel production primarily relies on two primary methods: the basic oxygen furnace (BOF), which uses iron ore as an input, and the electric arc furnace (EAF), which uses scrap steel. Many entities in the industry operate on an international scale. Note: With a few exceptions, most entities do not mine their own ore to manufacture steel and iron products. There exists a separate standard for the Metals & Mining (EM-MM) industry.
    Remove
  • Water Utilities & Services Water Utilities & Services industry entities own and operate water supply and wastewater treatment systems (generally structured as regulated utility businesses) or provide operational and other specialised water services to system owners (usually market-based operations). Water supply systems include the sourcing, treatment and distribution of water to residences, businesses and other entities such as governments. Wastewater systems collect and treat wastewater, including sewage, greywater, industrial waste fluids and stormwater runoff, before discharging the resulting effluent back into the environment.
    Remove

Relevant Issues for both Industries (12 of 26)

Why are some issues greyed out? The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.

Disclosure Topics

What is the relationship between General Issue Category and Disclosure Topics? The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.
  • Iron & Steel Producers Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      • Greenhouse Gas Emissions Iron and steel production generates significant direct greenhouse gas (GHG) emissions, primarily carbon dioxide and methane, from production processes and on-site fuel combustion. Although technological improvements have reduced the GHG emissions per tonne of steel produced, steel production remains carbon-intensive compared to other industries. Regulatory efforts to reduce GHG emissions in response to the risks posed by climate change may result in additional regulatory compliance costs and risks for iron and steel entities because of climate change mitigation policies. Entities can achieve operational efficiencies through the cost-effective reduction of GHG emissions. Capturing such efficiencies can mitigate the potential financial effects of increased fuel costs from regulations that limit—or put a price on—GHG emissions.
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      • Air Quality Iron and steel production typically generates criteria air pollutants, volatile organic compounds (VOCs) and hazardous air pollutants, which can have significant localised public health impacts. Of particular concern are sulphur oxides, nitrogen dioxide, lead, carbon monoxide and manganese, as well as particles such as soot and dust, released during production. Technological innovation and continuous improvements in steel-making processes have reduced air pollutants significantly from the Iron & Steel Producers industry. However, air pollutants remain a concern because of increased regulatory and public concern about air pollution, as well as expansion of steel production in emerging markets. In emerging markets, regulatory efforts to curb air pollution may constrain iron and steel production. Active management of facility emissions through industry best practices implementation across global operations can facilitate the transition to sustainable steel production, reducing costs and potentially enhancing operational efficiency.
    • Energy Management The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.
      • Energy Management The production of steel requires significant energy, sourced primarily from the direct fossil fuel combustion as well as energy purchased from the grid. Energy-intense production has implications for climate change, and electricity purchases from the grid can result in indirect Scope 2 emissions. The choice between various production processes—electric arc furnaces and integrated basic oxygen furnaces—can influence whether an entity uses fossil fuels or purchases electricity. This decision, together with the choice between using coal versus natural gas or on-site versus grid-sourced electricity, may influence both the costs and reliability of energy supply. Affordable, easily accessible and reliable energy is an important industry competitive factor. Energy costs account for a substantial portion of iron and steel manufacturing costs. How an iron and steel entity manages its energy efficiency, its reliance on various types of energy and associated sustainability risks, and its ability to access alternative sources of energy can influence its profitability.
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      • Water Management Steel production requires substantial volumes of water. Entities face increasing operational, regulatory and reputational risks associated with water scarcity, costs of water acquisition, regulations on effluents or amount of water used, and competition with local communities and other industries for limited water resources. These risks are particularly likely to affect regions where water is scarce, resulting in water availability constraints and price volatility. Entities unable to secure a stable water supply could face production disruptions, while rising water prices could directly increase production costs. Consequently, entities adopting technologies and processes to decrease reduce water consumption may reduce operating risks and costs by mitigating the operational impacts of regulatory changes, water supply shortages and community-related disruptions.
    • Waste & Hazardous Materials Management The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.
      • Waste Management Although waste reclamation rates in steel production are high, the industry generates significant quantities of hazardous wastes. Slag, dusts and sludges constitute the three main industry waste types. These by-products often are recycled internally or sold to other industries. However, process wastes such as electric arc furnace dust, which may be regulated as a hazardous material because of its heavy metal content, can have significant environmental and human health impacts, present a regulatory risk, and result in additional operating costs for entities. Risks related to the long-term impacts of waste disposal may result in significant costs, including those associated with monitoring and managing contaminated off-site disposal properties, for which jurisdictional authorities may hold iron and steel producers responsible for remediation and restoration activities. Entities that reduce waste streams, hazardous waste streams in particular, and recycle or sell non-hazardous by-products, could mitigate regulatory risks and reduce costs while increasing revenues.
    • Access & Affordability The category addresses a company’s ability to ensure broad access to its products and services, specifically in the context of underserved markets and/or population groups. It includes the management of issues related to universal needs, such as the accessibility and affordability of health care, financial services, utilities, education, and telecommunications.
      None
    • Product Quality & Safety The category addresses issues involving unintended characteristics of products sold or services provided that may create health or safety risks to end-users. It addresses a company’s ability to offer manufactured products and/or services that meet customer expectations with respect to their health and safety characteristics. It includes, but is not limited to, issues involving liability, management of recalls and market withdrawals, product testing, and chemicals/content/ingredient management in products.
      None
    • Employee Health & Safety The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.
      • Workforce Health & Safety Iron and steel production processes can present significant risks to employees and contractors working in iron and steel plants. Given the high temperatures and heavy machinery involved, worker injuries and fatalities are a matter of serious concern to iron and steel producers. Given the hazardous work environment, the industry has relatively high fatality rates requiring a strong safety culture and comprehensive health and safety policies. Although accident rates in the industry are in decline, worker injuries and fatalities can result in regulatory penalties, negative publicity, low worker morale and productivity, and increased healthcare and compensation costs.
    • Business Model Resilience The category addresses an industry’s capacity to manage risks and opportunities associated with incorporating social, environmental, and political transitions into long-term business model planning. This includes responsiveness to the transition to a low-carbon and climate-constrained economy, as well as growth and creation of new markets among unserved and underserved socio-economic populations. The category highlights industries in which evolving environmental and social realities may challenge companies to fundamentally adapt or may put their business models at risk.
      None
    • Supply Chain Management The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.
      • Supply Chain Management Iron ore and coal are critical raw material inputs to the steel production process. Iron ore mining and coal production are resource-intensive processes. Mineral extraction often has substantial environmental and social impacts adversely affecting local communities, workers and ecosystems. Community protests, legal or regulatory action, or increased regulatory compliance costs or penalties can disrupt mining operations. Iron and steel entities could face supply disruptions as a result, or in some cases, also may be subject to regulatory penalties associated with the environmental or social impact of the mining entity supplier. Minimising such risks through appropriate supplier screening, monitoring and engagement, iron and steel producers may manage their direct critical raw materials suppliers proactively to ensure they are not engaged in illegal or otherwise environmentally or socially damaging practices.
    • Materials Sourcing & Efficiency The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.
      None
    • Physical Impacts of Climate Change The category addresses the company’s ability to manage risks and opportunities associated with direct exposure of its owned or controlled assets and operations to actual or potential physical impacts of climate change. It captures environmental and social issues that may arise from operational disruptions due to physical impacts of climate change. It further captures socio-economic issues resulting from companies failing to incorporate climate change consideration in products and services sold, such as insurance policies and mortgages. The category relates to the company’s ability to adapt to increased frequency and severity of extreme weather, shifting climate, sea level risk, and other expected physical impacts of climate change. Management may involve enhancing resiliency of physical assets and/or surrounding infrastructure as well as incorporation of climate change-related considerations into key business activities (e.g., mortgage and insurance underwriting, planning and development of real estate projects).
      None
  • Water Utilities & Services Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      None
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      None
    • Energy Management The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.
      • Energy Management Entities in the Water Utilities & Services industry consume significant amounts of energy for the withdrawal, conveyance, treatment, and distribution or discharge of potable water and wastewater. Typically, an entity’s largest operating cost after purchased water, chemicals, labour and utility operating costs is energy use. Purchased grid electricity is the most common energy input. In more remote locations, entities may use on-site generation to power equipment. The inefficient use of purchased grid electricity creates environmental externalities, such as increased Scope 2 greenhouse gas emissions. Environmental regulations may affect the future grid energy mix, resulting in price increases. Additionally, climate change is expected to impact grid reliability and affect the availability of water resources. As a result, water utility energy intensity may increase in the future as water resource access becomes more difficult. Alternative water treatment, such as recycling and desalination, also can require more energy. Together with decisions about the use of alternative fuels, renewable energy and on-site electricity generation, energy efficiency can influence both the cost and the reliability of the energy supply.
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      • Distribution Network Efficiency Water utilities develop, maintain and operate complex interconnected infrastructure networks that include extensive pipelines, canals, reservoirs and pump stations. Distribution networks may lose significant volumes of water (called ‘non-revenue water’ because it is a distributed volume of water not reflected in customer billings). This water is lost primarily because of infrastructure failures and inefficiencies, such as leaking pipes and service connections. Non-revenue real water losses may impact financial performance, raise customer rates, and squander water and other resources such as energy and treatment chemicals. Conversely, improvements to infrastructure and operating processes may limit non-revenue losses, increase revenue and reduce costs. Efficiently directing operational and maintenance expenses or capital expenditures to distribution systems including primarily pipeline and service connection repair, refurbishment, or replacement may improve entity value and provide strong investment returns.
      • Effluent Quality Management Water and wastewater treatment facilities produce effluent that may pose risks to the environment and human health. Effluent includes residuals and solids that consist of chemicals used in the treatment process and contaminants removed from raw water or wastewater inputs. Facilities discharge treated effluent into surface water or pump it into groundwater. Potential environmental impacts vary depending on the treatment and disposal process. Additionally, consumers and regulators are becoming increasingly concerned by substances that may not be treated by wastewater facilities, such as endocrine disrupting chemicals (EDCs). Because of the environmental risks associated with effluent, treatment facilities are subject to extensive environmental regulations to control and monitor their impact. As public and regulatory scrutiny of effluent quality increases with emerging concerns about some potentially harmful substances, entities may need to innovate to ensure effluent is not harmful to the environment or human health. Effluent discharges exceeding jurisdictional limits may result in significant regulatory penalties, and frequent or severe episodes may jeopardise a utility’s social licence to operate. Entities can avoid the financial consequences of poor effluent quality management through infrastructure and equipment planning, maintenance and operations, as well as the deployment of appropriately trained and experienced labour.
    • Waste & Hazardous Materials Management The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.
      None
    • Access & Affordability The category addresses a company’s ability to ensure broad access to its products and services, specifically in the context of underserved markets and/or population groups. It includes the management of issues related to universal needs, such as the accessibility and affordability of health care, financial services, utilities, education, and telecommunications.
      • Water Affordability & Access Reliable clean water access is considered a basic human right in most jurisdictions. Affordable pricing and sufficient access are essential components of this right. Thus, structuring water rates in a way that the community perceives to be fair is an important part of the operations and functions of entities in the Water Utilities & Services industry. Entities that collabourate with regulators to implement rate structures that are well-received by the communities they service may be better able to maintain financial stability and take advantage of opportunities for growth—especially because of the widespread underfunding of water infrastructure in many regions. Entities that use rate mechanisms that inhibit access to water through prohibitive costs or otherwise, may face community opposition. Entities should ensure fair pricing and access, as well as rates that can adequately fund infrastructure over the long term, provide safe drinking water and wastewater treatment, and receive appropriate returns on capital.
    • Product Quality & Safety The category addresses issues involving unintended characteristics of products sold or services provided that may create health or safety risks to end-users. It addresses a company’s ability to offer manufactured products and/or services that meet customer expectations with respect to their health and safety characteristics. It includes, but is not limited to, issues involving liability, management of recalls and market withdrawals, product testing, and chemicals/content/ingredient management in products.
      • Drinking Water Quality Entities in the industry must ensure that drinking water conforms to health regulations, satisfies customer expectations and is supplied reliably. To protect human health, entities must protect water sources from contamination, which also may reduce treatment processes and costs for entities. Comprehensive treatment processes are designed, developed and maintained to meet water quality standards, and the finished water output is monitored routinely for compliance and safety. Natural disasters, such as forest fires and flooding, may also affect water quality. Overall, entities invest significant resources to deliver safe drinking water consistently to customers. Failure to ensure adequate water quality may result in regulatory fines, litigation, increased operating costs or capital expenditures, reputational risk, and asset or business seizure.
    • Employee Health & Safety The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.
      None
    • Business Model Resilience The category addresses an industry’s capacity to manage risks and opportunities associated with incorporating social, environmental, and political transitions into long-term business model planning. This includes responsiveness to the transition to a low-carbon and climate-constrained economy, as well as growth and creation of new markets among unserved and underserved socio-economic populations. The category highlights industries in which evolving environmental and social realities may challenge companies to fundamentally adapt or may put their business models at risk.
      • End-Use Efficiency Consumer level water efficiency and conservation—whether a product of government mandates, environmental consciousness or demographic trends—is increasingly important for long-term resource availability and the financial performance of the water supply segment of the industry. How utilities work with regulators to mitigate revenue declines while increasing end-use resource efficiency may be financially material. Water efficiency mechanisms, including rate decoupling, may ensure that a utility’s revenue can adequately cover its fixed costs and provide the desired level of returns regardless of sales volume, while incentivising customers to conserve water. Efficiency mechanisms can align utilities’ economic incentives with environmental and social interests, including improved resource efficiency, lower rates and increased capital investments in infrastructure. Water utilities may manage rate mechanism impacts through positive regulatory relations, forward-looking rate cases that incorporate efficiency and a strong execution of efficiency strategy.
    • Supply Chain Management The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.
      None
    • Materials Sourcing & Efficiency The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.
      • Water Supply Resilience Water supply systems obtain water from groundwater and surface water sources. Water supplies either may be accessed directly or purchased from a third party, often a government entity. Water scarcity, water source contamination, infrastructure failures, regulatory restrictions, competing users and overconsumption by customers are all factors that may jeopardise sufficient water supply access. These issues, combined with an increasing risk of extreme and frequent drought conditions because of climate change, may result in inadequate supplies or mandated water restrictions. The related financial impacts may manifest in diverse ways, depending on rate structure, but are most likely to impact entity value through decreased revenue. Water supply challenges also may increase the price of purchased water, which could result in higher operating costs. Failures of critical infrastructure such as aqueducts and canals, which could result from events such as earthquakes, can present catastrophic risks to customers of the water supply system and could inflict untold financial consequences. Entities may mitigate water supply risks (and the resulting financial risks) through diversification of water supplies, sustainable withdrawal levels, technological and infrastructure improvements, contingency planning, positive relations with regulators and other major users, as well as rate structures.
    • Physical Impacts of Climate Change The category addresses the company’s ability to manage risks and opportunities associated with direct exposure of its owned or controlled assets and operations to actual or potential physical impacts of climate change. It captures environmental and social issues that may arise from operational disruptions due to physical impacts of climate change. It further captures socio-economic issues resulting from companies failing to incorporate climate change consideration in products and services sold, such as insurance policies and mortgages. The category relates to the company’s ability to adapt to increased frequency and severity of extreme weather, shifting climate, sea level risk, and other expected physical impacts of climate change. Management may involve enhancing resiliency of physical assets and/or surrounding infrastructure as well as incorporation of climate change-related considerations into key business activities (e.g., mortgage and insurance underwriting, planning and development of real estate projects).
      • Network Resiliency & Impacts of Climate Change Climate change may create uncertainty for water supply systems and wastewater systems because of potential impacts on infrastructure and operations. Climate change may result in increased water stress, more frequent severe weather events, reduced water quality and rising sea levels that could impair utility assets and operations. Water supply and wastewater disposal are basic services for which maintaining operational continuity is of utmost importance. The increasing frequency and severity of storms challenge water and wastewater treatment facilities, and these factors can affect service continuity. Intense precipitation may result in sewage volumes that exceed treatment facility capacity resulting in the release of untreated effluent. Minimising current and future risks of service disruptions and improving service quality may require additional capital expenditures and operational expenses. As the likelihood of extreme weather events increases, entities that address these risks through redundancies and strategic planning may better serve customers and improve performance.

Select up to 4 industries

Current Industries:
Iron & Steel Producers
|
Water Utilities & Services
Extractives & Minerals Processing
Infrastructure
Consumer Goods
Financials
Food & Beverage
Health Care
Renewable Resources & Alternative Energy
Resource Transformation
Services
Technology & Communications
Transportation