Industry Comparison

You are viewing information about the following Industries:

  • Oil & Gas – Refining & Marketing Oil & Gas - Refining & Marketing (R&M) entities refine petroleum products, market oil and gas products, or operate gas stations, all of which comprise the downstream operations of the oil and gas value chain. The types of refinery products and crude oil inputs influence the complexity of the refining process used, with varied expenditure needs and intensity of environmental and social impacts.
    Remove
  • Electric Utilities & Power Generators Electric Utilities & Power Generators industry entities generate electricity; build, own and operate transmission and distribution (T&D) lines; and sell electricity. Utilities generate electricity from many different sources, commonly including coal, natural gas, nuclear energy, hydropower, solar, wind and other renewable and fossil fuel energy sources. The industry comprises entities operating in both regulated and unregulated business structures. Regulated utilities face comprehensive regulatory oversight of their pricing mechanisms and their allowed return on equity, among other types of regulation, to maintain their licence to operate as a monopoly. Unregulated entities or merchant power entities are often independent power producers (IPPs) that generate electricity to sell to the wholesale market, which includes regulated utility buyers and other end users. Furthermore, entities in the industry may operate across both regulated and deregulated power markets depending on their operational span. Regulated markets typically contain vertically integrated utilities that own and operate everything from the generation of power to its retail distribution. Deregulated markets commonly split generation from distribution to encourage wholesale power generation competition. Overall, the complex task of providing reliable, accessible, low-cost power while balancing the protection of human life and the environment remains a challenge.
    Remove

Relevant Issues for both Industries (12 of 26)

Why are some issues greyed out? The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.

Disclosure Topics

What is the relationship between General Issue Category and Disclosure Topics? The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.
  • Oil & Gas – Refining & Marketing Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      • Greenhouse Gas Emissions Refining & Marketing (R&M) operations generate significant direct greenhouse gas (GHG) emissions from a variety of sources. Emissions primarily consist of carbon dioxide and methane from stationary fossil fuel combustion for energy supply. Energy costs are a significant share of refinery operating costs. GHGs also are released from process emissions, fugitive emissions resulting from leaks, emissions from venting and flaring, and from non-routine events such as equipment maintenance. The energy intensity of production, and therefore the GHG emissions intensity, can vary significantly depending on the type of crude oil feedstock used and refined product specifications. Entities that cost-effectively reduce GHG emissions from their operations may capture operational efficiencies. Such reductions also may mitigate the effects of increased fuel costs from regulations that limit—or put a price on—GHG emissions.
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      • Air Quality Non-greenhouse gas (GHG) air emissions from Refining & Marketing (R&M) operations include air pollutants, which can create significant and localised environmental or health risks. Specific emissions of concern include sulphur dioxide, nitrogen oxides, hydrogen sulphide, particulate matter and VOCs. Releases occur from stationary combustion sources, storage vessels, flares and equipment leaks, and may also occur because of accidents. Human health impacts and financial consequences may be exacerbated the closer a facility is to population centres. Active management of the issue—through technological and process improvements—may allow entities to mitigate the effect of regulations and benefit from operational efficiencies that could result in reduced costs.
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      • Water Management Refineries can use large quantities of water depending on their size and refining process complexity. This water use exposes them to the risk of water scarcity, depending on their location, and related costs. Extraction of water from water-stressed regions or water contamination also may create tensions with local communities. Refinery operations require wastewater treatment and disposal, often via on-site wastewater treatment plants before discharge. Reducing water use and contamination through recycling and other water management strategies may permit entities to capture operational efficiencies and reduce operating costs. They also could minimise regulatory, water supply shortages and community-related disruptions on operations.
    • Waste & Hazardous Materials Management The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.
      • Hazardous Materials Management As a by-product of their operations, Refining & Marketing (R&M) entities generate various forms of waste derived from the processing of petroleum products. Many of these substances are hazardous to human health and the environment and may be subject to regulation. Remediation of inactive or decommissioned sites may take many years to complete, and entities may accrue liabilities for past operations. Hazardous substance releases from underground storage tanks (USTs) used by refining facilities and gas stations can affect land redevelopment for abandoned or closed facilities. Spills and releases during operations can result in groundwater contamination and other negative impacts. R&M entities that reduce and recycle hazardous waste streams, as well as those that have effective and prompt clean-up and remediation measures in place for normal operations and decommissioned facilities, may reduce regulatory and litigation risks and associated costs.
    • Access & Affordability The category addresses a company’s ability to ensure broad access to its products and services, specifically in the context of underserved markets and/or population groups. It includes the management of issues related to universal needs, such as the accessibility and affordability of health care, financial services, utilities, education, and telecommunications.
      None
    • Employee Health & Safety The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.
      • Workforce Health & Safety Hazards associated with the operations of entities in the Refining & Marketing (R&M) industry may present risks to employee health and safety. Such hazards include the handling and processing of hydrocarbons, frequently at high temperatures and pressures during refining operations. Accidents or inadvertent exposures to chemicals and other hazards such as heat or noise may result in fatalities, severe injuries or illnesses. Releases of hydrocarbons or other hazardous substances resulting from accidents or leaks also can have negative consequences for neighbouring communities. An entity’s ability to protect employee health and safety, and to create a culture of safety and well-being among employees at all levels, can help prevent accidents, mitigate costs and operational downtime, and enhance workforce productivity.
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      • Product Specifications & Clean Fuel Blends Some regulatory jurisdictions have implemented product specifications and renewable fuel blends, which pose significant compliance and operational risks for Refining & Marketing (R&M) entities. Entities may face long-term reductions in revenue from fossil fuel-based products and services because of GHG mitigation policies such as renewable fuel mandates or standards, as well as competition from non-fossil fuel products. To ensure regulatory compliance and position themselves for long-term competitiveness, some entities are investing in clean fuel production or purchasing ethanol and other renewable biofuels. Advanced biofuels and fuel technologies have lower lifecycle impacts than traditional biofuels, and they can be used to minimise future regulatory risks and public pressure. Although short-term costs to find commercially viable technologies can be significant, investments in R&D for such technologies could serve to support R&M entities’ long-term profitability.
    • Business Model Resilience The category addresses an industry’s capacity to manage risks and opportunities associated with incorporating social, environmental, and political transitions into long-term business model planning. This includes responsiveness to the transition to a low-carbon and climate-constrained economy, as well as growth and creation of new markets among unserved and underserved socio-economic populations. The category highlights industries in which evolving environmental and social realities may challenge companies to fundamentally adapt or may put their business models at risk.
      None
    • Competitive Behaviour The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).
      • Pricing Integrity & Transparency Regulators are responsible for overseeing issues related to pricing integrity and transparency, which includes the potential for market manipulation by oil and gas entities, including Refining & Marketing (R&M) entities. Regulatory agencies focusing on refineries may investigate various competitive factors, including capacity utilisation and refinery maintenance decisions, product supply decisions, product margins, and capital planning, creating uncertainty regarding future enforcement. The focus of enforcement actions also may include prices reported to price index publishers, as well as potential price distortions through trading positions in physical transactions, and through swaps, futures and derivatives. Maintaining market integrity and ensuring transparency in product pricing can therefore reduce regulatory risks and liabilities for R&M entities and protect consumers from unfair pricing.
    • Management of the Legal & Regulatory Environment The category addresses a company’s approach to engaging with regulators in cases where conflicting corporate and public interests may have the potential for long-term adverse direct or indirect environmental and social impacts. The category addresses a company’s level of reliance upon regulatory policy or monetary incentives (such as subsidies and taxes), actions to influence industry policy (such as through lobbying), overall reliance on a favorable regulatory environment for business competitiveness, and ability to comply with relevant regulations. It may relate to the alignment of management and investor views of regulatory engagement and compliance at large.
      • Management of the Legal & Regulatory Environment The Refining & Marketing (R&M) industry is subject to numerous sustainability-related regulations and an often rapidly changing regulatory environment. Changes to the legal and regulatory environment may result in material effects on shareholder value. Entities in the industry regularly participate in the regulatory and legislative process on a wide variety of environmental and societal issues. Such engagement can result from entities seeking to ensure industry views are represented in the development of regulations affecting the industry as well as to represent shareholder interests. At the same time, such engagement to influence environmental laws and regulations may adversely affect entities’ reputations and ultimately affect an entity’s social licence to operate.
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      • Critical Incident Risk Management The operations of Refining & Marketing (R&M) entities are often characterised by a high number of hazards, including the handling of flammable, volatile substances, the use of highly reactive chemicals, and the processing of fluids at high temperature and pressure. Accidental releases of hydrocarbons or other hazardous substances can have significant consequences for an entity’s workforce, as well as external social and environmental consequences. In addition to effective process safety management practices, entities frequently prioritise developing a culture of safety to reduce the probability that accidents and other health and safety incidents will occur. If accidents and other emergencies do occur, entities with a strong safety culture often can detect and respond effectively to such incidents. A culture that engages and empowers employees and contractors to work with management to safeguard their own health, safety and well-being and prevent accidents may help entities reduce production downtime, mitigate costs, ensure workforce productivity and maintain their licence to operate.
    • Systemic Risk Management The category addresses the company’s contributions to or management of systemic risks resulting from large-scale weakening or collapse of systems upon which the economy and society depend. This includes financial systems, natural resource systems, and technological systems. It addresses the mechanisms a company has in place to reduce its contributions to systemic risks and to improve safeguards that may mitigate the impacts of systemic failure. For financial institutions, the category also captures the company’s ability to absorb shocks arising from financial and economic stress and meet stricter regulatory requirements related to the complexity and interconnectedness of companies in the industry.
      None
  • Electric Utilities & Power Generators Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      • Greenhouse Gas Emissions & Energy Resource Planning Electricity generation represents the largest source of greenhouse gas (GHG) emissions in the world. Mainly carbon dioxide, methane and nitrous oxide, these emissions are mostly by-products of fossil fuel combustion. The transmission or distribution (T&D) segments of the industry produce negligible emissions. Electric utility entities could face significant operating costs and capital expenditures for mitigating GHG emissions as environmental regulations become increasingly stringent. Although many of these costs may be passed to a utility’s customers, some power generators, especially in deregulated markets, may be unable to recoup these costs. Entities may reduce GHG emissions from electricity generation through careful infrastructure investment planning by ensuring the delivery of an energy mix capable of meeting the emissions requirements set forth by regulations, and by implementing industry-leading technologies and processes. Being proactive in cost-effectively reducing GHG emissions may create a competitive advantage for entities and mitigate unanticipated regulatory compliance costs. Failure to properly estimate capital-expenditure needs and permitting costs, or other difficulties in reducing GHG emissions, may result in significant negative effects on returns in the form of asset write-downs, the costs to obtain carbon credits, or unexpected increases in operating and capital expenditures. Regulatory emphasis on this issue may increase in the coming decades, as exemplified by the international emissions-reduction agreement made at the 21st session of the United Nations Conference of the Parties in 2015.
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      • Air Quality Fuel combustion in electricity-generation operations generates hazardous air pollutants. These air pollutants can create significant and localised environmental and health risks. The most common and impactful are nitrogen oxides (excluding nitrous oxide), sulphur oxide, particulate matter (PM), lead and mercury. Emissions of these localised air pollutants often are strictly regulated, creating significant compliance risks for electricity generators. Regulatory and legal risks are higher for entities operating near large communities. Harmful operational air emissions may result in regulatory penalties, higher regulatory compliance costs and capital expenditures to install control technology. In some cases, such expenditures may be cost prohibitive to continued facility operations. Entities may manage air quality concerns by reducing emissions, as well as by working with regulators to establish priorities and manage short- and long-term capital planning risks.
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      • Water Management Electricity generation is one of the most water-intensive industries in the world in terms of water withdrawals. Thermoelectric power plants—typically coal, nuclear and natural gas—use large quantities of water for cooling purposes. The industry is facing increasing water-related supply and regulatory risks, potentially requiring capital investment in technology or even creating stranded assets. As water supplies tighten in many regions—and electricity generation, agriculture and community use compete for water supplies—power plants increasingly may be unable to operate at full capacity, or at all, because of region-specific water constraints. The availability of water is an important factor to consider when calculating the future value of many electricity-generating assets and for evaluating proposals for new generation sources. Increased water scarcity—because of factors such as increasing consumption and reduced supplies resulting from climate change, which could result in more frequent or intense droughts—could prompt regulatory authorities to limit entities’ ability to withdraw necessary amounts of water, especially in regions with high baseline water stress. Furthermore, entities must manage the growing number of regulations related to the significant biodiversity impacts that such large withdrawals may cause. To mitigate these risks, entities can invest both in more efficient water-usage systems for plants, and place strategic priority on assessing long-term water availability, as well as water-related biodiversity risks, when siting new power plants.
    • Waste & Hazardous Materials Management The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.
      • Coal Ash Management Electricity generators must safely discard the hazardous by-products of their operations. Coal-fired electricity generation is a major source of hazardous waste because of coal ash. Coal ash can have a significant effect on entity value in the power-generation segment of the industry. This issue will affect entities differently, depending on the extent to which they generate electricity from coal. Coal ash is one of the largest industrial waste streams in the world. It contains heavy metal contaminants associated with cancer and other serious diseases, especially when they leach into groundwater. Coal ash can have beneficial uses when recycled or reused, such as in the creation of fly ash concrete or wallboard, creating revenue opportunities for electric utilities. Safe handling of coal ash, locating coal ash impoundments to minimise potential harm to human life or the environment, effective monitoring and containment of coal ash, and the sale of coal ash for beneficial uses are important strategies to reduce regulatory compliance costs as well as penalties for non-compliance. Coal ash leaching into the surrounding environment can result in significant litigation and remediation costs.
    • Access & Affordability The category addresses a company’s ability to ensure broad access to its products and services, specifically in the context of underserved markets and/or population groups. It includes the management of issues related to universal needs, such as the accessibility and affordability of health care, financial services, utilities, education, and telecommunications.
      • Energy Affordability An objective of regulated electric utilities is to provide reliable, affordable and sustainable electricity. Entities in the industry manage these potentially competing priorities to maintain favourable relations with customers and regulators—and ultimately to earn appropriate returns for shareholders. The affordability of energy is particularly challenging for entities to balance because it often conflicts with other core objectives. Utility energy bills generally are perceived to be increasingly unaffordable for low-income customers (affordability is determined by both the net cost of energy bills and the underlying customer economics). Ensuring that utility bills are affordable is crucial for utilities working to build trust (intangible asset value) with regulators and customers. Regulatory relations are an important value driver for utilities and one of the issues analysed closely by investment analysts. The willingness of regulators to grant rate requests, rate structure modifications, cost recovery and allowed returns determines financial performance and investment risk. Effectively managing affordability may enable utilities to invest more capital, favourably revise rate structures and increase allowed returns. Furthermore, utilities that ineffectively manage affordability increasingly are exposed to customers defecting from the grid (or reducing reliance on the grid) by implementing distributed energy resources or pursuing other alternative energy sources (for example, industrial customers’ use of combined heat and power). Managing affordability involves operating an efficient business with a comprehensive, long-term strategy, as well as working closely with regulators and public policymakers on rate structures and, potentially, bill-assistance programmes. Although a utility’s business model and rate structure largely determine the precise nature of the financial effects, affordability is a critical business issue for utilities managing, maintaining and growing customer bases, building intangible asset value, creating investment and return opportunities, and ultimately delivering shareholder returns.
    • Employee Health & Safety The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.
      • Workforce Health & Safety Employees of entities in the Electric Utilities & Power Generators industry face numerous hazards in the construction and maintenance of electric transmission and distribution lines, as well as with the various means of electricity generation. Many of these employees work for extended periods at great heights, operate heavy machinery and face electrocution risks. Although the industry has made significant strides in safety improvements, significant risks remain, along with opportunities for further improvements. The nature of the industry—as a necessity of modern life and economies, as well as commonly a legally granted monopoly—means that entity actions receive significant public and regulatory scrutiny. Entities must maintain a culture of safety to ensure adequate working conditions for their workers, strong operational productivity, and to uphold positive views from the perspective of regulators and manage potential risks of regulatory penalties.
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      None
    • Business Model Resilience The category addresses an industry’s capacity to manage risks and opportunities associated with incorporating social, environmental, and political transitions into long-term business model planning. This includes responsiveness to the transition to a low-carbon and climate-constrained economy, as well as growth and creation of new markets among unserved and underserved socio-economic populations. The category highlights industries in which evolving environmental and social realities may challenge companies to fundamentally adapt or may put their business models at risk.
      • End-Use Efficiency & Demand Energy efficiency is a low-lifecycle-cost method to reduce greenhouse gas (GHG) emissions, because less electricity needs to be generated to provide the same end-use energy services. Utilities can promote energy efficiency and conservation among their customers. Such strategies may include offering rebates for energy-efficient appliances, weatherising customers’ homes, educating customers on energy-saving methods, offering incentives to customers to curb electricity use during times of peak demand (‘demand response’), or investing in technology such as smart meters, which allow customers to track their energy use. While saving consumers money, these efforts also may reduce operating costs for electric utilities by decreasing peak demand. Furthermore, depending on the utility regulatory framework, local jurisdictions may mandate that entities develop energy efficiency plans before permitting new builds. Companies with effective strategies to reduce the downside risks from demand fluctuations, may gain adequate and timely returns on needed investments. Furthermore, reducing costs through efficiency initiatives may earn higher, long-term risk-adjusted returns.
    • Competitive Behaviour The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).
      None
    • Management of the Legal & Regulatory Environment The category addresses a company’s approach to engaging with regulators in cases where conflicting corporate and public interests may have the potential for long-term adverse direct or indirect environmental and social impacts. The category addresses a company’s level of reliance upon regulatory policy or monetary incentives (such as subsidies and taxes), actions to influence industry policy (such as through lobbying), overall reliance on a favorable regulatory environment for business competitiveness, and ability to comply with relevant regulations. It may relate to the alignment of management and investor views of regulatory engagement and compliance at large.
      None
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      • Nuclear Safety & Emergency Management Although rare, nuclear accidents can have significant human health and environmental consequences because of their severity. Owners of nuclear power plants in many regions have operated for decades without any major public safety incidents, but the occurrence of infrequent but large-magnitude incidents anywhere in the world can have major effects on the entire nuclear power industry. Entities that own and operate nuclear plants may lose their licence to operate, as well as face many other financial consequences in the event of an accident—though entities carry insurance and may have legal protections from some liabilities. Failure to comply with the safety regulations can be expensive to nuclear power operators; in extreme circumstances it may make the continued operation of the plant uneconomical. Facing potentially significant financial repercussions, both from ongoing safety compliance as well as tail risk incidents, entities that own or operate nuclear plants must be vigilant in the safety compliance, best practices and upgrades of their facilities. They also must maintain robust emergency preparedness training for their staff and a strong safety culture. These measures can reduce the probability that accidents will occur and enable an entity to effectively detect and respond to such incidents.
    • Systemic Risk Management The category addresses the company’s contributions to or management of systemic risks resulting from large-scale weakening or collapse of systems upon which the economy and society depend. This includes financial systems, natural resource systems, and technological systems. It addresses the mechanisms a company has in place to reduce its contributions to systemic risks and to improve safeguards that may mitigate the impacts of systemic failure. For financial institutions, the category also captures the company’s ability to absorb shocks arising from financial and economic stress and meet stricter regulatory requirements related to the complexity and interconnectedness of companies in the industry.
      • Grid Resiliency Electricity is critical for the continued function of most elements of modern life, from medicine to finance, creating a societal reliance on continuous service. Major disruptions to electricity infrastructure may result in potentially high societal costs. Disruptions can be caused by extreme weather events, natural disasters and cyberattacks. As the frequency and severity of extreme weather events associated with climate change continues to increase, all segments of electric utilities entities—and especially major transmission and distribution (T&D) operations—will face increasing physical threats to their infrastructure. Extreme weather events could result in frequent or significant service disruptions, outages and require upgrade or repair of damaged or compromised equipment, all of which may add substantial costs and damage brand reputation among regulators and customers. The increased use of smart grid technology has several benefits, including strengthening the resiliency of the grid to extreme weather events. However, this technology may make the grid more vulnerable to cyberattacks, because it provides hackers more entryways into infrastructure systems. Entities must implement strategies that minimise the probability and magnitude of impacts from extreme weather events and cyberattacks. To remain competitive in the face of increasing external competition, entities must improve the reliability, resilience and quality of their infrastructure.

Select up to 4 industries

Current Industries:
Oil & Gas – Refining & Marketing
|
Electric Utilities & Power Generators
Extractives & Minerals Processing
Infrastructure
Consumer Goods
Financials
Food & Beverage
Health Care
Renewable Resources & Alternative Energy
Resource Transformation
Services
Technology & Communications
Transportation