Industry Comparison

You are viewing information about the following Industries:

  • Gas Utilities & Distributors The Gas Utilities & Distributors industry consists of gas distribution and marketing entities. Gas distribution involves operating local, low-pressure pipes to transfer natural gas from larger transmission pipes to end users. Gas marketing entities are gas brokers that aggregate and deliver natural gas in quantities that meet the needs of various customers, generally through other entities’ transmission and distribution lines. A relatively smaller portion of this industry is involved in propane gas distribution; therefore, this standard is focused on natural gas distribution. Both types of gas are used for heating and cooking by residential, commercial and industrial customers. In regulated markets, the utility is granted a full monopoly over the distribution and sale of natural gas. A regulator must approve the rates utilities charge to prevent the abuse of their monopoly position. In deregulated markets, distribution and marketing are separated legally, and customers have a choice of which entity from which to buy their gas. In this case, a common carrier utility is guaranteed a monopoly only over distribution and is required legally to transmit all gas equitably along its pipes for a fixed fee. Overall, entities must provide safe, reliable, low-cost gas, while effectively managing their social and environmental impacts, such as community safety and methane emissions.
    Remove
  • Containers & Packaging Containers and packaging industry entities convert raw materials including metal, plastic, paper and glass, into semi-finished or finished packaging products. Entities produce a wide range of products, including corrugated cardboard packaging, food and beverage containers, bottles for household products, aluminium cans, steel drums and other forms of packaging. Entities in the industry typically function as business-to-business entities and many operate globally.
    Remove

Relevant Issues for both Industries (11 of 26)

Why are some issues greyed out? The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.

Disclosure Topics

What is the relationship between General Issue Category and Disclosure Topics? The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.
  • Gas Utilities & Distributors Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      None
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      None
    • Energy Management The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.
      None
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      None
    • Waste & Hazardous Materials Management The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.
      None
    • Access & Affordability The category addresses a company’s ability to ensure broad access to its products and services, specifically in the context of underserved markets and/or population groups. It includes the management of issues related to universal needs, such as the accessibility and affordability of health care, financial services, utilities, education, and telecommunications.
      • Energy Affordability An objective of gas utilities is to deliver natural gas to customers in a safe, reliable and environmentally responsible manner. Entities in the industry manage these potentially competing priorities while maintaining favourable relations with customers and regulators—and ultimately to earn appropriate shareholder returns. From the utility customer perspective, the affordability of energy is challenging to balance, because it often conflicts with other core objectives. Utility energy bills generally are perceived to be increasingly more expensive for low-income customers (affordability is determined by both the net cost of energy bills and the underlying economics of customers). Ensuring utility bills remain affordable is crucial for utilities in building trust (intangible asset value) with regulators and customers. The quality of regulatory relations is an important value driver for utilities, and one of the issues analysed closely by investment analysts. Regulators’ willingness, or lack thereof, to grant rate requests, rate structure modifications, cost recovery and allowed returns is a primary determinant of financial performance and investment risk. Effectively managing affordability may provide opportunities to grow capital investment, revise rate structures favourably and increase allowed returns. Furthermore, utilities that ineffectively manage affordability increasingly face customers reducing their reliance upon natural gas (or reducing energy needs) and pursuing alternative energy sources (for example, industrial customers’ use of combined heat and power). Managing affordability involves operating an efficient business with a comprehensive, long-term strategy, as well as working closely with regulators and public policymakers on rate structures and, potentially, bill-assistance programmes. Although utility business models and rate structures largely determine the precise nature of the financial effects, affordability is a critical business issue for utilities managing, maintaining and growing their customer bases, building intangible asset value, creating investment and return opportunities, and ultimately delivering shareholder returns.
    • Product Quality & Safety The category addresses issues involving unintended characteristics of products sold or services provided that may create health or safety risks to end-users. It addresses a company’s ability to offer manufactured products and/or services that meet customer expectations with respect to their health and safety characteristics. It includes, but is not limited to, issues involving liability, management of recalls and market withdrawals, product testing, and chemicals/content/ingredient management in products.
      None
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      None
    • Business Model Resilience The category addresses an industry’s capacity to manage risks and opportunities associated with incorporating social, environmental, and political transitions into long-term business model planning. This includes responsiveness to the transition to a low-carbon and climate-constrained economy, as well as growth and creation of new markets among unserved and underserved socio-economic populations. The category highlights industries in which evolving environmental and social realities may challenge companies to fundamentally adapt or may put their business models at risk.
      • End-Use Efficiency Natural gas produces fewer greenhouse gas (GHG) emissions than other fossil fuels. Expanding its use in the economy may be an important strategy for many governments and regulators striving to reduce GHG emissions. However, despite the relatively lower emissions, the natural gas value chain still produces meaningful levels of GHG emissions overall. As policymakers and regulators seek to mitigate climate change, the efficient consumption of natural gas will be an important long-term theme. Energy efficiency is a low-lifecycle-cost method to reduce greenhouse gas (GHG) emissions. Utilities can offer customers a wide range of options to promote energy efficiency, including providing rebates for energy-efficient appliances, weatherising customers’ homes and educating customers on energy saving methods. Overall, entities that sponsor efficiency initiatives may reduce the downside risks from demand fluctuations, gain returns on needed investments, decrease operating costs and earn higher risk-adjusted returns over the long term.
    • Supply Chain Management The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.
      None
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      • Integrity of Gas Delivery Infrastructure Operating a vast network of gas pipelines, equipment and storage facilities requires a multifaceted, long-term approach to ensuring infrastructure integrity and managing related risks. Although customers depend on reliable gas supplies, entities manage substantial risks—including those related to human health, property and greenhouse gas (GHG) emissions—that result from operating gas distribution networks and related infrastructure. Ageing infrastructure, inadequate monitoring and maintenance, and other operational factors may result in gas leaks. Gas leak safety-related risks, such as losses of containment, may result in fires or explosions that can be particularly dangerous in urban areas where entities often operate. Furthermore, gas leaks also result in fugitive emissions (methane), causing adverse environmental impacts. Regulated gas utilities generally incur no direct costs for gas leaks, because the cost of gas typically is passed on to customers (though this may vary by region). However, gas leaks that result in safety-related risks or fugitive emissions may affect entities financially through a variety of regulatory, legal and product demand channels. Accidents, particularly fatal accidents, may result in negligence claims against entities, leading to costly court battles and fines. GHG emissions may result in increased regulatory scrutiny—a critical element directly connected to financial performance, given the importance of regulatory relations—and potential fines and penalties. Importantly, regulated gas utilities can financially benefit from capital investment opportunities to improve performance and mitigate risks related to safety and emissions, which can be factored into their rate base. Entities manage such risks through pipeline replacements, regular inspections and monitoring, employee training and emergency preparedness, investments in technology, and other strategies such as working closely with regulators. In response to concerns about ageing infrastructure, many entities are seeking ways to expedite the replacement permitting and approval process, especially in cases where pipelines are located near densely populated areas.
  • Containers & Packaging Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      • Greenhouse Gas Emissions The Containers & Packaging industry generates direct (Scope 1) greenhouse gas (GHG) emissions from fossil fuel combustion in manufacturing and cogeneration processes. GHG emissions may result in regulatory compliance costs or penalties and operating risks for entities. However, the financial effects may vary depending on the magnitude of emissions and the prevailing emissions regulations. The industry may be subject to increasingly stringent regulations as countries try to limit or reduce emissions. Entities that cost-effectively manage GHG emissions through greater energy efficiency, the use of alternative fuels or manufacturing process advances could benefit from improved operating efficiency and reduced regulatory risk, among other financial benefits.
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      • Air Quality In addition to greenhouse gases (GHGs), containers and packaging manufacturing may produce air emissions, which may include sulphur dioxides (SOx), nitrogen oxides (NOx) and particulate matter (PM). As with GHGs, these emissions typically stem from fuel combustion to produce energy. Relative to other industries, the Containers & Packaging industry is a significant source of some of these emissions. Although related financial effects may vary depending on the magnitude of emissions and the prevailing regulations, entities face operating costs, regulatory compliance costs, regulatory penalties in the event of non-compliance and capital expenditures related to emissions management. As such, entities may manage the issue through technological process improvements or other strategies that can mitigate such impacts, improving financial performance and enhancing brand value.
    • Energy Management The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.
      • Energy Management Containers and packaging manufacturing is energy-intensive, with energy used to power processing units, cogeneration plants, machinery and non-manufacturing facilities. The type of energy used, amount consumed and energy management strategies depend on the type of products manufactured. Typically, fossil fuels such as natural gas and biomass are the predominant form of energy used, while purchased electricity also may be a significant share. Therefore, energy purchases may be a significant share of production costs. An entity’s energy mix may include energy generated on site, purchased grid electricity and fossil fuels, and renewable and alternative energy. Trade-offs in the use of such energy sources include cost, reliability of supply, related water use and air emissions, and regulatory compliance and risk. As such, an entity’s energy intensity and energy sourcing decisions may affect its operating efficiency and risk profile over time.
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      • Water Management Containers and packaging manufacturing requires water for various stages of production including in raw materials processing, process cooling and steam generation at on site cogeneration plants. Long-term historical increases in water scarcity and cost, and expectations of continued increases—because of over-consumption and reduced supplies resulting from population growth and shifts, pollution and climate change—show the importance of water management. Water scarcity may result in a higher risk of operational disruption for entities with water-intensive operations, and can increase water procurement costs and capital expenditures. Meanwhile, containers and packaging manufacturing may generate process wastewater that must be treated before disposal. Non-compliance with water quality regulations may result in regulatory compliance and mitigation costs or legal expenses stemming from litigation. Reducing water use and consumption through increased efficiency and other water management strategies may result in lower operating costs over time and may mitigate financial effects of regulations, water supply shortages and community-related disruptions of operations.
    • Waste & Hazardous Materials Management The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.
      • Waste Management Containers and packaging manufacturing may generate hazardous process waste which may include heavy metals, spent acids, catalysts and wastewater treatment sludge. Entities face regulatory and operational challenges in managing waste because some wastes are subject to regulations pertaining to its transport, treatment, storage and disposal. Waste management strategies include reduced generation, effective treatment and disposal, and recycling and recovery, if possible. Such activities, while requiring initial investment or operating costs, may reduce an entity’s long-term cost structure and mitigate the risk of remediation liabilities or regulatory penalties.
    • Access & Affordability The category addresses a company’s ability to ensure broad access to its products and services, specifically in the context of underserved markets and/or population groups. It includes the management of issues related to universal needs, such as the accessibility and affordability of health care, financial services, utilities, education, and telecommunications.
      None
    • Product Quality & Safety The category addresses issues involving unintended characteristics of products sold or services provided that may create health or safety risks to end-users. It addresses a company’s ability to offer manufactured products and/or services that meet customer expectations with respect to their health and safety characteristics. It includes, but is not limited to, issues involving liability, management of recalls and market withdrawals, product testing, and chemicals/content/ingredient management in products.
      • Product Safety Container and packaging product safety is a critical factor for the industry since many products are used in consumer-facing applications including in the food and healthcare industries. Aspects of packaging safety include physical hazards and the presence of potentially hazardous chemical substances. In the event of a product safety incident, products may be recalled or require redesign, possibly increasing costs to the manufacturer and resulting in reduced revenue and adverse impacts to brand value. As such, entities that proactively manage product safety risks may enhance their brand reputation and reduce adverse financial impacts.
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      • Product Lifecycle Management Containers and packaging entities face opportunities and challenges associated with the potential environmental impacts of their products throughout their lifecycle. Designing products with reduced use-phase and end-of-life environmental impacts is an important opportunity for manufacturers. Demand for packaging produced with safer chemicals and using recycled and renewable materials continues to grow, along with demand for recyclable, reusable and compostable products. Although the lifecycle impact of products depends largely on their use and disposal, entities that effectively optimise such attributes during the design phase may gain a competitive advantage.
    • Business Model Resilience The category addresses an industry’s capacity to manage risks and opportunities associated with incorporating social, environmental, and political transitions into long-term business model planning. This includes responsiveness to the transition to a low-carbon and climate-constrained economy, as well as growth and creation of new markets among unserved and underserved socio-economic populations. The category highlights industries in which evolving environmental and social realities may challenge companies to fundamentally adapt or may put their business models at risk.
      None
    • Supply Chain Management The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.
      • Supply Chain Management Containers and packaging manufacturing uses large quantities of raw materials including wood fibre and aluminium. Sustainable production of these materials is an important supply chain consideration for entities in the industry because adverse environmental impacts could increase materials costs and affect the brand value of entities. To mitigate such risks, entities may implement supply chain vetting practices and implement third-party standards within internal operations and suppliers that certify that the materials were produced in a sustainable manner. Additionally, such actions may raise brand value and meet customer demand for sustainably produced packaging products, providing access to new markets and growth opportunities.
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      None

Select up to 4 industries

Current Industries:
Gas Utilities & Distributors
|
Containers & Packaging
Infrastructure
Resource Transformation
Consumer Goods
Extractives & Minerals Processing
Financials
Food & Beverage
Health Care
Renewable Resources & Alternative Energy
Services
Technology & Communications
Transportation