Industry Comparison

You are viewing information about the following Industries:

  • Biofuels Biofuels industry entities produce biofuels and process raw materials for production. Using organic feedstocks, entities manufacture biofuels that are used primarily in transportation. Entities typically source feedstocks, which include food, oil crops and animal products, from agricultural product distributors. Ethanol and biodiesel are the most widely produced biofuels, while other types include biogas, biohydrogen and synthetic biofuels, produced from a variety of organic feedstocks. Biofuels entities’ customers are chiefly fuel-blending and fuel-supply entities, including major integrated oil entities. Government regulations related to the use of renewable fuel are a significant demand driver in the industry.
    Remove
  • Oil & Gas – Midstream Oil & Gas - Midstream industry entities transport or store natural gas, crude oil and refined petroleum products. Midstream natural gas activities involve gathering, transporting and processing natural gas from the wellhead, such as the removal of impurities, production of natural gas liquids, storage, pipeline transport and shipping, liquefaction, or regasification of liquefied natural gas. Midstream oil activities mainly involve transporting crude oil and refined products using pipeline networks, truck and rail, and marine transport on tankers or barges. Entities that operate storage and distribution terminals, as well as those that manufacture and install storage tanks and pipelines, are also part of this industry.
    Remove

Relevant Issues for both Industries (9 of 26)

Why are some issues greyed out? The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.

Disclosure Topics

What is the relationship between General Issue Category and Disclosure Topics? The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.
  • Biofuels Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      None
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      • Air Quality Biofuel refineries generate air emissions that may include air pollutants and volatile organic compounds. Grain-handling equipment, boilers, wastewater treatment, and cooling, drying, distillation and fermentation units generate emissions. In most regions, such emissions typically are subject to jurisdictional regulations that limit emissions below specific thresholds. As a result, air emissions often are subject to emissions permits and abatement that may result in incremental operating and compliance costs or capital expenditures. Entities also may face regulatory penalties, as well as permit restrictions or delays from jurisdictional legal or regulatory authorities for non-compliance.
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      • Water Management in Manufacturing Biofuel refining is water-intensive. Biorefineries require water for feedstock processing, fermentation, distillation and cooling. Although water use at biorefineries is modest relative to the quantities consumed during feedstock crop production, it is concentrated, and thus may affect local water resources. Facilities also may generate wastewater containing salts, organic compounds, dissolved solids, phosphorus and other substances, requiring wastewater treatment. Biofuel refineries also may face reduced water availability, related cost increases or operational disruptions. Water extraction from particular areas for refining, as well as contamination of water supplies because of refining operations, also could create regulatory risk and tensions with local communities. Water efficiency in operations and the proper treatment of effluents are therefore important for biofuels entities.
    • Ecological Impacts The category addresses management of the company’s impacts on ecosystems and biodiversity through activities including, but not limited to, land use for exploration, natural resource extraction, and cultivation, as well as project development, construction, and siting. The impacts include, but are not limited to, biodiversity loss, habitat destruction, and deforestation at all stages – planning, land acquisition, permitting, development, operations, and site remediation. The category does not cover impacts of climate change on ecosystems and biodiversity.
      None
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      • Lifecycle Emissions Balance The rapid growth in global biofuels production has been encouraged by government energy policies that seek to reduce net GHG emissions from transportation fuels and dependence on fossil fuels. Most major renewable-fuel policies worldwide require that biofuels achieve lifecycle GHG emissions reductions relative to a fossil-fuel baseline to qualify for renewable fuel-mandate thresholds. The biofuel lifecycle emission calculation may include indirect and direct emissions from feedstock crop production and land use, fuel refining, fuel and feedstock transport, and vehicle exhaust emissions. Biofuel producers may influence net emissions directly during the refining process through energy management (fuel use), process innovations and by using feedstocks with lower emissions profiles. Fuel products that achieve a reduction in net emissions may qualify as advanced biofuels, which could increase future demand. Biofuel entities that cost-effectively reduce product net carbon emissions may gain a competitive product advantage, spur revenue growth and increase market share.
    • Supply Chain Management The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.
      • Sourcing & Environmental Impacts of Feedstock Production The Biofuels industry uses a variety of plant-based feedstocks for production. Most entities purchase feedstocks from agricultural producers and distributors. A growing proportion of the world’s arable land now is occupied by biofuel crops. Unsustainable cultivation practices can have negative environmental externalities, including deforestation and biodiversity loss, soil degradation, and water pollution. These factors may affect feedstock crop yields adversely over the short- and long-term. This, in turn, may influence the price and availability of feedstocks for biofuels producers. Consequently, vetting the sustainability of supply chains, such as through certifications or engagement with suppliers, is an important consideration for biofuels producers.
    • Competitive Behaviour The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).
      None
    • Management of the Legal & Regulatory Environment The category addresses a company’s approach to engaging with regulators in cases where conflicting corporate and public interests may have the potential for long-term adverse direct or indirect environmental and social impacts. The category addresses a company’s level of reliance upon regulatory policy or monetary incentives (such as subsidies and taxes), actions to influence industry policy (such as through lobbying), overall reliance on a favorable regulatory environment for business competitiveness, and ability to comply with relevant regulations. It may relate to the alignment of management and investor views of regulatory engagement and compliance at large.
      • Management of the Legal & Regulatory Environment The Biofuels industry is dependent on government policies and regulations that create market demand and incentivise supply with tax breaks and other support for feedstock production. The Biofuels industry supports some regulations and policies related to renewable fuel policy, production tax credits and feedstock production. While regulatory support can result in positive short-term gains by supporting the biofuels market, the potential long-term adverse environmental impacts from feedstock and biofuels production may result in a reversal of beneficial policies, leading to a more uncertain regulatory environment. Consequently, biofuels entities may benefit from developing clear strategies for engaging regulators that are aligned with long-term sustainable business outcomes and that account for environmental externalities.
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      • Operational Safety, Emergency Preparedness & Response Biofuel production presents operational safety hazards because of the presence of flammable and explosive substances, high temperatures, and pressurised equipment. Process safety incidents can damage facilities, injure workers, and affect the local environment and communities. Although the frequency of accidents in the industry is relatively low, when they do take place, the outcomes may be severe, with significant effects on financial performance. Damaged facilities may be inoperable for extended periods, resulting in lost revenues and large capital expenditures for repairs. Entities perceived to be at a greater risk of process safety incidents may have a higher cost of capital, while workforce injuries could result in regulatory penalties and litigation. Conversely, entities with a strong safety culture and operational safety oversight may detect and respond more effectively to such incidents, mitigating potential financial risks and improving operational efficiency.
  • Oil & Gas – Midstream Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      • Greenhouse Gas Emissions The Midstream industry generates significant greenhouse gases and other air emissions from compressor engine exhausts, oil and condensate tank vents, natural gas processing, and fugitive emissions, in addition to emissions from mobile sources. GHG emissions contribute to climate change and create incremental regulatory compliance costs and risks for Midstream entities. At the same time, the management of methane fugitive emissions has emerged as a significant operational, reputational and regulatory risk. Financial effects on entities will vary depending on the specific location of operations and prevailing emissions regulations, and they include increased operating or capital expenditures and regulatory or legal penalties. Entities that capture and monetise emissions, or cost-effectively reduce emissions by implementing innovative monitoring and mitigation efforts and fuel efficiency measures, may enjoy substantial financial benefits. Entities can reduce regulatory risks and realise operational efficiencies as regulatory and public concerns about air quality and climate change increase.
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      • Air Quality Air emissions from Oil & Gas – Midstream entities include air pollutants, which can create significant and localised environmental or health risks. Of particular concern are sulphur dioxide, nitrogen dioxide and volatile organic compound (VOC) emissions. The financial consequences entities face from air emissions vary depending on the specific locations of operations and the prevailing air emissions regulations. Amid increasing regulatory and public concerns about air quality, active air quality management through technological and process improvements could allow entities to mitigate the adverse financial effects of regulations. Entities could benefit from operational efficiencies that may result in a lower cost structure over time.
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      None
    • Ecological Impacts The category addresses management of the company’s impacts on ecosystems and biodiversity through activities including, but not limited to, land use for exploration, natural resource extraction, and cultivation, as well as project development, construction, and siting. The impacts include, but are not limited to, biodiversity loss, habitat destruction, and deforestation at all stages – planning, land acquisition, permitting, development, operations, and site remediation. The category does not cover impacts of climate change on ecosystems and biodiversity.
      • Ecological Impacts The storage and transport of crude oil, natural gas and related products through a vast system of maritime transportation vehicles, pipelines, trains and trucks presents considerable risks to the environment and local communities. Leaks, accidental discharges, pipeline rights-of-way and open easements over ecologically sensitive land could negatively impact ecosystems in several ways, including natural habitat loss and changes in species movement. To protect endangered species and ecologically sensitive areas, jurisdictional legal and regulatory authorities may require development and decommissioning plans that mitigate or remediate potential ecological impacts prior to project approval. Together with regulatory compliance costs, these plans may require significant capital and operational expenditures. As concerns over ecological impacts increase, greenfield and existing developed sites may be designated as protected areas under new laws or the enforcement of existing laws. Entities that effectively manage ecological impacts may avoid project delays, remediation and litigation liabilities, and could gain easier access to new projects and sources of revenue.
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      None
    • Supply Chain Management The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.
      None
    • Competitive Behaviour The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).
      • Competitive Behaviour Entities that own natural gas pipelines and storage facilities face numerous and constantly changing regulations in all aspects of their operations, including the rates charged, common carrier access and new facility siting and construction. Many pipelines and terminals enjoy natural monopolies, and regulations ensure that entities do not abuse this position through unfair pricing, discriminatory service or by other means. Because of concerns about the effects of oil and gas market distortions on consumers and businesses, market manipulation regulations could also affect entities in the Midstream industry. Prospective rate changes, compensation payments or regulatory penalties for violating regulations governing competitive behaviour may adversely affect entities. Midstream entities face uncertainty regarding their ability to change the rates charged, which could affect their ability to recover higher costs.
    • Management of the Legal & Regulatory Environment The category addresses a company’s approach to engaging with regulators in cases where conflicting corporate and public interests may have the potential for long-term adverse direct or indirect environmental and social impacts. The category addresses a company’s level of reliance upon regulatory policy or monetary incentives (such as subsidies and taxes), actions to influence industry policy (such as through lobbying), overall reliance on a favorable regulatory environment for business competitiveness, and ability to comply with relevant regulations. It may relate to the alignment of management and investor views of regulatory engagement and compliance at large.
      None
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      • Operational Safety, Emergency Preparedness & Response Entities in the Oil & Gas – Midstream industry operate a vast network of assets at risk of spills and accidents. Any incident that results in unintended hydrocarbon releases could have severe impacts on the environment, employees and local communities. Because of these concerns, applicable jurisdictional legal and regulatory authorities may implement new safety regulations related to pipeline and rail operations. Significant events may result in large one-time costs from fines and corrective actions, and contingent liabilities for remediation or legal damages. These factors also could impair an entity’s social licence to operate. As demonstrated by investigations of past incidents, an entity that develops a strong safety culture and establishes a thorough and systematic approach to safety and risk management may minimise such risks. This includes emergency preparedness and response and operational integrity within the entity and in its external relationships with contractors.

Select up to 4 industries

Current Industries:
Biofuels
|
Oil & Gas – Midstream
Extractives & Minerals Processing
Renewable Resources & Alternative Energy
Consumer Goods
Financials
Food & Beverage
Health Care
Infrastructure
Resource Transformation
Services
Technology & Communications
Transportation