Industry Comparison
Select Language
Current language: English (2023)
You are viewing information about the following Industries:
-
Electronic Manufacturing Services & Original Design Manufacturing
The Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry consists of two main segments. EMS entities provide assembly, logistics and after-market services for original equipment manufacturers. ODM entities provide engineering and design services for original equipment manufacturers and may own significant intellectual property. Although EMS & ODM entities produce equipment for a variety of sectors, the industry is associated closely with the Hardware industry, which consists of entities that design technology hardware products such as personal computers, consumer electronics and storage devices for both personal consumers and businesses. -
Auto Parts
Entities in the Auto Parts industry supply motor vehicle parts and accessories to original equipment manufacturers (OEM). Auto parts entities typically specialise in manufacturing and assembling parts or accessories, such as engine exhaust systems, alternative drivetrains, hybrid systems, catalytic converters, aluminium wheels (rims), tyres, rear-view mirrors, and onboard electrical and electronic equipment. Although the larger automotive industry includes several tiers of suppliers that provide parts and raw materials used to assemble motor vehicles, the scope of these Auto Parts industry disclosures includes only Tier 1 suppliers that supply parts directly to OEMs. The scope of the industry excludes captive suppliers, such as engine and stamping facilities, owned and operated by OEMs. It also excludes Tier 2 suppliers, which provide inputs for the Auto Parts industry.
Relevant Issues for both Industries (9 of 26)
Why are some issues greyed out?
The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.-
Environment
- GHG Emissions
- Air Quality
-
Energy Management
The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope. -
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution. -
Waste & Hazardous Materials Management
The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories. - Ecological Impacts
-
Social Capital
- Human Rights & Community Relations
- Customer Privacy
- Data Security
- Access & Affordability
-
Product Quality & Safety
The category addresses issues involving unintended characteristics of products sold or services provided that may create health or safety risks to end-users. It addresses a company’s ability to offer manufactured products and/or services that meet customer expectations with respect to their health and safety characteristics. It includes, but is not limited to, issues involving liability, management of recalls and market withdrawals, product testing, and chemicals/content/ingredient management in products. - Customer Welfare
- Selling Practices & Product Labeling
-
Human Capital
-
Labour Practices
The category addresses the company’s ability to uphold commonly accepted labour standards in the workplace, including compliance with labour laws and internationally accepted norms and standards. This includes, but is not limited to, ensuring basic human rights related to child labour, forced or bonded labour, exploitative labour, fair wages and overtime pay, and other basic workers’ rights. It also includes minimum wage policies and provision of benefits, which may influence how a workforce is attracted, retained, and motivated. The category further addresses a company’s relationship with organized labour and freedom of association. -
Employee Health & Safety
The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment. - Employee Engagement, Diversity & Inclusion
-
-
Business Model and Innovation
-
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories. - Business Model Resilience
- Supply Chain Management
-
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category. - Physical Impacts of Climate Change
-
-
Leadership and Governance
- Business Ethics
-
Competitive Behaviour
The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP). - Management of the Legal & Regulatory Environment
- Critical Incident Risk Management
- Systemic Risk Management
Disclosure Topics
What is the relationship between General Issue Category and Disclosure Topics?
The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.-
Access Standard
-
Energy Management
The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.None -
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.-
Water Management
The manufacturing of computers, computer components and other electronics requires significant volumes of water. Water is becoming a globally scarce resource because of increasing consumption from population growth, rapid urbanisation and climate change. Without careful planning, water scarcity may result in higher supply costs, social tensions with local communities and governments, or loss of access to water in water-scarce regions thereby presenting a critical risk to production and revenue. Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) entities that improve water use efficiency may reduce operating costs and maintain a lower risk profile, ultimately affecting cost of capital and market valuation. Furthermore, entities that prioritise water use efficiency may reduce regulatory risks as applicable jurisdictional environmental laws or regulations place more emphasis on resource conservation.
-
-
Waste & Hazardous Materials Management
The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.-
Waste Management
The manufacturing of computers, computer components and other electronics requires significant volumes of chemicals and generates air and water emissions and solid waste, including hazardous substances. The handling and disposal of hazardous wastes produced during manufacturing may result in increased operating costs, capital expenditures, and in some instances, increased compliance costs or regulatory fines and penalties. Entities in the Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry that reduce waste produced during manufacturing and ensure it is appropriately reused, recycled or disposed may have a lower risk profile and face lower regulatory risks as applicable jurisdictional environmental laws or regulations place increasing emphasis on resource conservation and waste management.
-
-
Product Quality & Safety
The category addresses issues involving unintended characteristics of products sold or services provided that may create health or safety risks to end-users. It addresses a company’s ability to offer manufactured products and/or services that meet customer expectations with respect to their health and safety characteristics. It includes, but is not limited to, issues involving liability, management of recalls and market withdrawals, product testing, and chemicals/content/ingredient management in products.None -
Labour Practices
The category addresses the company’s ability to uphold commonly accepted labour standards in the workplace, including compliance with labour laws and internationally accepted norms and standards. This includes, but is not limited to, ensuring basic human rights related to child labour, forced or bonded labour, exploitative labour, fair wages and overtime pay, and other basic workers’ rights. It also includes minimum wage policies and provision of benefits, which may influence how a workforce is attracted, retained, and motivated. The category further addresses a company’s relationship with organized labour and freedom of association.-
Labour Practices
Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) entities operate in a highly cost competitive environment and are therefore sensitive to labour costs and risks. Additionally, customers commonly require entities to meet tight production deadlines for important product launches, such as releases of new technology by hardware entities. Combined, these factors increase the importance of entities maintaining good relations with labour. Poor labour relations may expose entities to work stoppages and production disruptions. Such disruptions may result in reduced near-term revenue, as well as possible adverse effects on long-term productivity because of lower employee morale. In addition to maintaining an entity’s brand value and social licence to operate, improvements in labour practices may mitigate production disruptions.
-
-
Employee Health & Safety
The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.-
Workforce Conditions, Health & Safety
The treatment of workers and the protection of workers’ rights in the Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry is of growing concern among customers, regulators and leading entities. Critical aspects of this issue may include working conditions, environmental responsibility and workforce health and safety—particularly relating to hazardous materials and potentially dangerous manufacturing equipment. Entities in this industry operate in a cost competitive environment and therefore rely upon low-cost and contract labour. The industry’s reliance on subcontractors, labour recruitment entities and a multi-tiered system of suppliers may make safety performance improvement difficult. Further, entities often are located in countries with relatively low direct costs and varying degrees of regulation and enforcement for protecting workers. This dynamic may increase an entity’s exposure to reputational risks and impacts on short- and long-term costs and sales. Such effects may result from increasing regulation and enforcement in response to high-profile safety or labour incidents, or through a shift in demand away from entities associated with such incidents. Entities with strong supply-chain standards, monitoring and engagement with suppliers to manage labour concerns may better protect shareholder value over the long term.
-
-
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.-
Product Lifecycle Management
Entities in the Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry, along with the industry’s customers such as hardware entities, face increasing challenges associated with environmental externalities attributed to product manufacturing, transport, use and disposal. Rapid obsolescence of hardware products may worsen such externalities. The industry’s products commonly contain hazardous materials, making safe end-of-life disposal a critical aspect to manage. Entities unable to minimise the environmental externalities of their products may face increased regulatory costs as jurisdictional environmental laws or regulations place more emphasis on resource conservation and waste management. Through product innovation that facilitates end-of-life product recovery and the use of less impactful materials, EMS & ODM manufacturers can achieve improvements in lifecycle impacts, reduce regulatory risks and realise cost savings.
-
-
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.-
Materials Sourcing
Entities in the Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry rely on numerous critical materials as important inputs for finished products. Many of these inputs have few or no available substitutes and often are sourced in a few countries, many of which may be subject to geopolitical uncertainty. Other sustainability impacts related to climate change, land use, resource scarcity and conflict in regions where the industry’s supply chain operates are also increasingly shaping the industry’s ability to source materials. Additionally, increased competition for these materials because of growing global demand from other sectors may result in price increases and supply risks. Since entities commonly source materials from supply chains that often lack transparency, they may face increasing difficulty managing potential materials shortages, supply disruptions, price volatility and reputational risks. Failure to effectively manage sourcing may constrain access to necessary materials, reduce margins, impair revenue growth or increase costs of capital.
-
-
Competitive Behaviour
The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).None
-
-
Access Standard
-
Energy Management
The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.-
Energy Management
Most energy consumed in the automobile manufacturing process occurs in the supply chain. Auto parts manufacturers use electricity and fossil fuels in their production processes, resulting in direct and indirect emissions of greenhouse gases (GHGs). Purchased electricity is a majority of the energy used in the Auto Parts industry. Sustainability initiatives such as incentives for energy efficiency and renewable energy are making alternative sources of energy more cost competitive. Regulators and consumers also are encouraging the industry to reduce GHG emissions. While managing the cost and risks associated with overall energy efficiency, reliance on various types of energy and access to alternative energy sources may become increasingly important.
-
-
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.None -
Waste & Hazardous Materials Management
The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.-
Waste Management
Manufacturing auto parts involves using significant amounts of materials (including steel, iron, aluminium and plastics, among others). Waste generated by the industry includes machine lubricants and coolants, aqueous and solvent cleaning systems, paint, and scrap metals and plastics. Auto parts manufacturers spend a significant proportion of revenue on the cost of materials. Therefore, entities that manage manufacturing inputs properly by reducing and recycling waste may mitigate price volatility and supply disruption risks. Moreover, auto parts manufacturers may achieve cost savings and improve operational efficiency by increasing the proportion of waste recycled. Equally, auto parts manufacturers whose waste management practices create negative environmental impacts may face increased regulatory oversight. Violating environmental regulations may increase legal expenses as well as capital expenditures for pollution-control facilities and occupational health and safety projects.
-
-
Product Quality & Safety
The category addresses issues involving unintended characteristics of products sold or services provided that may create health or safety risks to end-users. It addresses a company’s ability to offer manufactured products and/or services that meet customer expectations with respect to their health and safety characteristics. It includes, but is not limited to, issues involving liability, management of recalls and market withdrawals, product testing, and chemicals/content/ingredient management in products.-
Product Safety
Driving is a risky activity, since distracted driving, speeding, drunk driving, dangerous weather conditions and other factors may result in accidents that expose drivers, passengers and bystanders to injuries and deaths. Accidents can also be caused by defective vehicle parts, and an entity’s failure to detect defects before vehicles are sold may have significant financial repercussions for both automobile and auto parts manufacturers. Entities improving vehicle safety and responding quickly when defects are identified may mitigate potentially costly regulatory action or customer lawsuits. These efforts may preserve relationships with original equipment manufacturers (OEMs), who often select Tier 1 suppliers based on their safety performance and reliability. As cars integrate more sophisticated electronics and technologies, risks related to recalls may increase. Through effective management of product safety, entities may enhance their brand value and improve sales over the long term.
-
-
Labour Practices
The category addresses the company’s ability to uphold commonly accepted labour standards in the workplace, including compliance with labour laws and internationally accepted norms and standards. This includes, but is not limited to, ensuring basic human rights related to child labour, forced or bonded labour, exploitative labour, fair wages and overtime pay, and other basic workers’ rights. It also includes minimum wage policies and provision of benefits, which may influence how a workforce is attracted, retained, and motivated. The category further addresses a company’s relationship with organized labour and freedom of association.None -
Employee Health & Safety
The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.None -
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.-
Design for Fuel Efficiency
Automobile manufacturers increasingly are demanding motor parts and components that reduce vehicle fuel consumption. Fuel-efficient components and parts are critical in reducing automobile tailpipe emissions through energy efficiency gains and weight reductions, among other factors. Auto parts entities that design and manufacture such parts may increase sales to auto manufacturers that increasingly are facing stricter environmental regulations and customer preferences for more environmentally friendly cars.
-
-
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.-
Materials Sourcing
Entities in the Auto Parts industry commonly rely on rare earth metals and other critical materials as important inputs for finished products. Many of these inputs have few substitutes and often are sourced from a few countries, many of which may be subject to geopolitical uncertainty. Other sustainability-related impacts such as climate change, land use, resource scarcity and conflict in regions where the industry’s supply chain operates are also increasingly shaping the industry’s ability to source materials. Additionally, increased competition for these materials because of growing global demand from other sectors may result in price increases and supply risks. These materials play a crucial role in clean energy technologies, such as electric and hybrid vehicles. As regulators strive to reduce greenhouse gas emissions and consumers demand more fuel-efficient vehicles, the share of hybrids and zero-emission vehicles (ZEVs) produced by the Automobiles industry may continue to increase in the future. Entities that limit the use of critical materials, secure sourcing and develop alternatives may mitigate supply disruptions and volatile input prices, which could adversely affect their margins, risk profile and cost of capital. -
Materials Efficiency
Millions of vehicles worldwide reach the end of their useful lives every year. At the same time, the rate of vehicle ownership is expanding globally, resulting in more end-of-life vehicles. To reduce vehicle lifecycle impact, auto parts manufacturers may design parts to be more easily recyclable and reusable, and apply modularity principles to product design. They also may sponsor take-back programmes to ensure safe product disposal and reuse. Given input price volatility and resource constraints, entities that manage materials efficiency may improve their long-term operational efficiency and risk profile. In addition, entities may reduce manufacturing costs by using fewer materials or by recycling materials, which may improve their margins.
-
-
Competitive Behaviour
The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).-
Competitive Behaviour
Competitive business practices are an important governance issue for entities in the Auto Parts industry. Although industry concentration is low, a wide range of auto parts are available, and competition for business within each category of parts may be limited. Therefore, leading producers of any specific auto part may wield substantial market power in specific market segments, creating antitrust concerns. Collusion and price fixing by auto parts manufacturers may ultimately affect consumers through higher vehicle prices. If such activities are discovered, jurisdictions may impose legal or regulatory penalties, and the resulting reputational damage may adversely affect an entity’s valuation.
-
-
General Issue Category
Remove
Electronic Manufacturing Services & Original Design Manufacturing
Access Standard
Remove
Auto Parts
Access Standard
Energy Management
-
Energy Management
Most energy consumed in the automobile manufacturing process occurs in the supply chain. Auto parts manufacturers use electricity and fossil fuels in their production processes, resulting in direct and indirect emissions of greenhouse gases (GHGs). Purchased electricity is a majority of the energy used in the Auto Parts industry. Sustainability initiatives such as incentives for energy efficiency and renewable energy are making alternative sources of energy more cost competitive. Regulators and consumers also are encouraging the industry to reduce GHG emissions. While managing the cost and risks associated with overall energy efficiency, reliance on various types of energy and access to alternative energy sources may become increasingly important.
Water & Wastewater Management
-
Water Management
The manufacturing of computers, computer components and other electronics requires significant volumes of water. Water is becoming a globally scarce resource because of increasing consumption from population growth, rapid urbanisation and climate change. Without careful planning, water scarcity may result in higher supply costs, social tensions with local communities and governments, or loss of access to water in water-scarce regions thereby presenting a critical risk to production and revenue. Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) entities that improve water use efficiency may reduce operating costs and maintain a lower risk profile, ultimately affecting cost of capital and market valuation. Furthermore, entities that prioritise water use efficiency may reduce regulatory risks as applicable jurisdictional environmental laws or regulations place more emphasis on resource conservation.
Waste & Hazardous Materials Management
-
Waste Management
The manufacturing of computers, computer components and other electronics requires significant volumes of chemicals and generates air and water emissions and solid waste, including hazardous substances. The handling and disposal of hazardous wastes produced during manufacturing may result in increased operating costs, capital expenditures, and in some instances, increased compliance costs or regulatory fines and penalties. Entities in the Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry that reduce waste produced during manufacturing and ensure it is appropriately reused, recycled or disposed may have a lower risk profile and face lower regulatory risks as applicable jurisdictional environmental laws or regulations place increasing emphasis on resource conservation and waste management.
-
Waste Management
Manufacturing auto parts involves using significant amounts of materials (including steel, iron, aluminium and plastics, among others). Waste generated by the industry includes machine lubricants and coolants, aqueous and solvent cleaning systems, paint, and scrap metals and plastics. Auto parts manufacturers spend a significant proportion of revenue on the cost of materials. Therefore, entities that manage manufacturing inputs properly by reducing and recycling waste may mitigate price volatility and supply disruption risks. Moreover, auto parts manufacturers may achieve cost savings and improve operational efficiency by increasing the proportion of waste recycled. Equally, auto parts manufacturers whose waste management practices create negative environmental impacts may face increased regulatory oversight. Violating environmental regulations may increase legal expenses as well as capital expenditures for pollution-control facilities and occupational health and safety projects.
Product Quality & Safety
-
Product Safety
Driving is a risky activity, since distracted driving, speeding, drunk driving, dangerous weather conditions and other factors may result in accidents that expose drivers, passengers and bystanders to injuries and deaths. Accidents can also be caused by defective vehicle parts, and an entity’s failure to detect defects before vehicles are sold may have significant financial repercussions for both automobile and auto parts manufacturers. Entities improving vehicle safety and responding quickly when defects are identified may mitigate potentially costly regulatory action or customer lawsuits. These efforts may preserve relationships with original equipment manufacturers (OEMs), who often select Tier 1 suppliers based on their safety performance and reliability. As cars integrate more sophisticated electronics and technologies, risks related to recalls may increase. Through effective management of product safety, entities may enhance their brand value and improve sales over the long term.
Labour Practices
-
Labour Practices
Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) entities operate in a highly cost competitive environment and are therefore sensitive to labour costs and risks. Additionally, customers commonly require entities to meet tight production deadlines for important product launches, such as releases of new technology by hardware entities. Combined, these factors increase the importance of entities maintaining good relations with labour. Poor labour relations may expose entities to work stoppages and production disruptions. Such disruptions may result in reduced near-term revenue, as well as possible adverse effects on long-term productivity because of lower employee morale. In addition to maintaining an entity’s brand value and social licence to operate, improvements in labour practices may mitigate production disruptions.
Employee Health & Safety
-
Workforce Conditions, Health & Safety
The treatment of workers and the protection of workers’ rights in the Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry is of growing concern among customers, regulators and leading entities. Critical aspects of this issue may include working conditions, environmental responsibility and workforce health and safety—particularly relating to hazardous materials and potentially dangerous manufacturing equipment. Entities in this industry operate in a cost competitive environment and therefore rely upon low-cost and contract labour. The industry’s reliance on subcontractors, labour recruitment entities and a multi-tiered system of suppliers may make safety performance improvement difficult. Further, entities often are located in countries with relatively low direct costs and varying degrees of regulation and enforcement for protecting workers. This dynamic may increase an entity’s exposure to reputational risks and impacts on short- and long-term costs and sales. Such effects may result from increasing regulation and enforcement in response to high-profile safety or labour incidents, or through a shift in demand away from entities associated with such incidents. Entities with strong supply-chain standards, monitoring and engagement with suppliers to manage labour concerns may better protect shareholder value over the long term.
Product Design & Lifecycle Management
-
Product Lifecycle Management
Entities in the Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry, along with the industry’s customers such as hardware entities, face increasing challenges associated with environmental externalities attributed to product manufacturing, transport, use and disposal. Rapid obsolescence of hardware products may worsen such externalities. The industry’s products commonly contain hazardous materials, making safe end-of-life disposal a critical aspect to manage. Entities unable to minimise the environmental externalities of their products may face increased regulatory costs as jurisdictional environmental laws or regulations place more emphasis on resource conservation and waste management. Through product innovation that facilitates end-of-life product recovery and the use of less impactful materials, EMS & ODM manufacturers can achieve improvements in lifecycle impacts, reduce regulatory risks and realise cost savings.
-
Design for Fuel Efficiency
Automobile manufacturers increasingly are demanding motor parts and components that reduce vehicle fuel consumption. Fuel-efficient components and parts are critical in reducing automobile tailpipe emissions through energy efficiency gains and weight reductions, among other factors. Auto parts entities that design and manufacture such parts may increase sales to auto manufacturers that increasingly are facing stricter environmental regulations and customer preferences for more environmentally friendly cars.
Materials Sourcing & Efficiency
-
Materials Sourcing
Entities in the Electronic Manufacturing Services (EMS) & Original Design Manufacturing (ODM) industry rely on numerous critical materials as important inputs for finished products. Many of these inputs have few or no available substitutes and often are sourced in a few countries, many of which may be subject to geopolitical uncertainty. Other sustainability impacts related to climate change, land use, resource scarcity and conflict in regions where the industry’s supply chain operates are also increasingly shaping the industry’s ability to source materials. Additionally, increased competition for these materials because of growing global demand from other sectors may result in price increases and supply risks. Since entities commonly source materials from supply chains that often lack transparency, they may face increasing difficulty managing potential materials shortages, supply disruptions, price volatility and reputational risks. Failure to effectively manage sourcing may constrain access to necessary materials, reduce margins, impair revenue growth or increase costs of capital.
-
Materials Sourcing
Entities in the Auto Parts industry commonly rely on rare earth metals and other critical materials as important inputs for finished products. Many of these inputs have few substitutes and often are sourced from a few countries, many of which may be subject to geopolitical uncertainty. Other sustainability-related impacts such as climate change, land use, resource scarcity and conflict in regions where the industry’s supply chain operates are also increasingly shaping the industry’s ability to source materials. Additionally, increased competition for these materials because of growing global demand from other sectors may result in price increases and supply risks. These materials play a crucial role in clean energy technologies, such as electric and hybrid vehicles. As regulators strive to reduce greenhouse gas emissions and consumers demand more fuel-efficient vehicles, the share of hybrids and zero-emission vehicles (ZEVs) produced by the Automobiles industry may continue to increase in the future. Entities that limit the use of critical materials, secure sourcing and develop alternatives may mitigate supply disruptions and volatile input prices, which could adversely affect their margins, risk profile and cost of capital. -
Materials Efficiency
Millions of vehicles worldwide reach the end of their useful lives every year. At the same time, the rate of vehicle ownership is expanding globally, resulting in more end-of-life vehicles. To reduce vehicle lifecycle impact, auto parts manufacturers may design parts to be more easily recyclable and reusable, and apply modularity principles to product design. They also may sponsor take-back programmes to ensure safe product disposal and reuse. Given input price volatility and resource constraints, entities that manage materials efficiency may improve their long-term operational efficiency and risk profile. In addition, entities may reduce manufacturing costs by using fewer materials or by recycling materials, which may improve their margins.
Competitive Behaviour
-
Competitive Behaviour
Competitive business practices are an important governance issue for entities in the Auto Parts industry. Although industry concentration is low, a wide range of auto parts are available, and competition for business within each category of parts may be limited. Therefore, leading producers of any specific auto part may wield substantial market power in specific market segments, creating antitrust concerns. Collusion and price fixing by auto parts manufacturers may ultimately affect consumers through higher vehicle prices. If such activities are discovered, jurisdictions may impose legal or regulatory penalties, and the resulting reputational damage may adversely affect an entity’s valuation.