Industry Comparison
Select Language
Current language: English (2023)
You are viewing information about the following Industries:
-
Hardware
Hardware industry entities design and sell technology hardware products, including computers, consumer electronics, communications equipment, storage devices, components and peripherals. Many entities in the industry rely heavily upon the Electronic Manufacturing Services & Original Design Manufacturing (EMS & ODM) industry for manufacturing services. The industry is expected to continue to grow as technology use rapidly increases, especially among emerging market consumers. -
Biofuels
Biofuels industry entities produce biofuels and process raw materials for production. Using organic feedstocks, entities manufacture biofuels that are used primarily in transportation. Entities typically source feedstocks, which include food, oil crops and animal products, from agricultural product distributors. Ethanol and biodiesel are the most widely produced biofuels, while other types include biogas, biohydrogen and synthetic biofuels, produced from a variety of organic feedstocks. Biofuels entities’ customers are chiefly fuel-blending and fuel-supply entities, including major integrated oil entities. Government regulations related to the use of renewable fuel are a significant demand driver in the industry.
Relevant Issues for both Industries (9 of 26)
Why are some issues greyed out?
The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.-
Environment
- GHG Emissions
-
Air Quality
The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category. - Energy Management
-
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution. - Waste & Hazardous Materials Management
- Ecological Impacts
-
Social Capital
- Human Rights & Community Relations
- Customer Privacy
-
Data Security
The category addresses management of risks related to collection, retention, and use of sensitive, confidential, and/or proprietary customer or user data. It includes social issues that may arise from incidents such as data breaches in which personally identifiable information (PII) and other user or customer data may be exposed. It addresses a company’s strategy, policies, and practices related to IT infrastructure, staff training, record keeping, cooperation with law enforcement, and other mechanisms used to ensure security of customer or user data. - Access & Affordability
- Product Quality & Safety
- Customer Welfare
- Selling Practices & Product Labeling
-
Human Capital
- Labour Practices
- Employee Health & Safety
-
Employee Engagement, Diversity & Inclusion
The category addresses a company’s ability to ensure that its culture and hiring and promotion practices embrace the building of a diverse and inclusive workforce that reflects the makeup of local talent pools and its customer base. It addresses the issues of discriminatory practices on the bases of race, gender, ethnicity, religion, sexual orientation, and other factors.
-
Business Model and Innovation
-
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories. - Business Model Resilience
-
Supply Chain Management
The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category. -
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category. - Physical Impacts of Climate Change
-
-
Leadership and Governance
- Business Ethics
- Competitive Behaviour
-
Management of the Legal & Regulatory Environment
The category addresses a company’s approach to engaging with regulators in cases where conflicting corporate and public interests may have the potential for long-term adverse direct or indirect environmental and social impacts. The category addresses a company’s level of reliance upon regulatory policy or monetary incentives (such as subsidies and taxes), actions to influence industry policy (such as through lobbying), overall reliance on a favorable regulatory environment for business competitiveness, and ability to comply with relevant regulations. It may relate to the alignment of management and investor views of regulatory engagement and compliance at large. -
Critical Incident Risk Management
The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur. - Systemic Risk Management
Disclosure Topics
What is the relationship between General Issue Category and Disclosure Topics?
The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.-
Access Standard
-
Air Quality
The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.None -
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.None -
Data Security
The category addresses management of risks related to collection, retention, and use of sensitive, confidential, and/or proprietary customer or user data. It includes social issues that may arise from incidents such as data breaches in which personally identifiable information (PII) and other user or customer data may be exposed. It addresses a company’s strategy, policies, and practices related to IT infrastructure, staff training, record keeping, cooperation with law enforcement, and other mechanisms used to ensure security of customer or user data.-
Product Security
The hardware products and related software offered by entities in the Hardware industry may have vulnerabilities that expose consumers to data security threats. Therefore, hardware manufacturers must help ensure user data security. Such vulnerabilities may occur at any stage of a product lifecycle, including product design, the manufacturing supply chain, product distribution and the product’s use-phase. Entities in the industry unable to identify vulnerabilities may risk exposing consumer data to security threats and potentially eroding the trust of their customer base. Cybersecurity threats create both risks and opportunities for the Hardware industry, as effective product security may be a source of competitive advantage for entities, potentially increasing their sales and market share. Additionally, user concerns about data security and related government actions may also serve as revenue-generating opportunities for securing government contracts and providing security products.
-
-
Employee Engagement, Diversity & Inclusion
The category addresses a company’s ability to ensure that its culture and hiring and promotion practices embrace the building of a diverse and inclusive workforce that reflects the makeup of local talent pools and its customer base. It addresses the issues of discriminatory practices on the bases of race, gender, ethnicity, religion, sexual orientation, and other factors.-
Employee Diversity & Inclusion
Greater workforce diversity is important for innovation since it helps entities understand the needs of a diverse and global customer base, which results in the ability to design desirable products and communicate with customers effectively. Entities unable to attract and retain diverse talent may risk losing market share to competitors that successfully employ a staff capable of recognising the needs of diverse populations and capturing demand from segments of the population that have been traditionally overlooked. Furthermore, entities perceived as being more representative of a diverse, global customer base may increase brand loyalty which also may be a source of competitive advantage. Entities successful in recruiting and retaining a diverse and inclusive workforce also may achieve lower employee turnover rates, resulting in cost savings.
-
-
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.-
Product Lifecycle Management
Entities in the Hardware industry face increasing challenges associated with environmental and social externalities attributed to product manufacturing, transport, use and disposal. Rapid obsolescence of hardware products may worsen these externalities. Entities are designing more products with the entire lifecycle in mind. Specific considerations include energy efficiency of products, hazardous material inputs, and designing for and facilitating safe end-of-life disposal and recycling. Entities that prioritise designing and manufacturing products with improved environmental and social impacts may avoid costs associated with externalities, and they may be more likely to grow consumer demand and market share, while eliminating potentially harmful materials. Furthermore, entities that minimise environmental and social externalities of products may be less exposed to increasing regulation and costs, such as those related to extended producer responsibility.
-
-
Supply Chain Management
The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.-
Supply Chain Management
Entities in the Hardware industry commonly have relatively narrow profit margins and remain competitive by relying on complex, global supply chains and outsourced production to electronics manufacturing services (EMS) entities. Because entities in the industry typically contract with suppliers in countries with lower direct costs, entities often manufacture products in countries that have limited labour regulations or enforcement protecting workers. Entities in the industry may have limited direct control over social and environmental standards in production, making management of this issue difficult. This dynamic may increase an entity’s exposure to reputational risks and impacts on short- and long-term costs and sales. Such effects may arise from increasing regulation and enforcement in response to high-profile safety or labour incidents, or through a shift in demand away from entities associated with such incidents. Entities that actively manage the impacts generated by the supply chain using supplier standards, monitoring and engagement may better protect shareholder value over the long term.
-
-
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.-
Materials Sourcing
Entities in the Hardware industry rely on numerous critical materials as important inputs for finished products. Many of these inputs have few or no available substitutes and often are sourced from only a few countries, many of which may be subject to geopolitical uncertainty. Other sustainability impacts related to climate change, land use, resource scarcity and conflict in regions where the industry’s supply chain operates are also increasingly shaping the industry’s ability to source materials. Additionally, increased competition for these materials because of growing global demand from other sectors may result in price increases and supply risks. The ability of entities to manage potential material shortages, supply disruptions, price volatility and reputational risks is made more difficult by the practice of commonly sourcing materials from supply chains that may lack transparency. Failure to effectively manage sourcing may constrain access to necessary materials, reduce margins, impair revenue growth or increase costs of capital.
-
-
Management of the Legal & Regulatory Environment
The category addresses a company’s approach to engaging with regulators in cases where conflicting corporate and public interests may have the potential for long-term adverse direct or indirect environmental and social impacts. The category addresses a company’s level of reliance upon regulatory policy or monetary incentives (such as subsidies and taxes), actions to influence industry policy (such as through lobbying), overall reliance on a favorable regulatory environment for business competitiveness, and ability to comply with relevant regulations. It may relate to the alignment of management and investor views of regulatory engagement and compliance at large.None -
Critical Incident Risk Management
The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.None
-
-
Access Standard
-
Air Quality
The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.-
Air Quality
Biofuel refineries generate air emissions that may include air pollutants and volatile organic compounds. Grain-handling equipment, boilers, wastewater treatment, and cooling, drying, distillation and fermentation units generate emissions. In most regions, such emissions typically are subject to jurisdictional regulations that limit emissions below specific thresholds. As a result, air emissions often are subject to emissions permits and abatement that may result in incremental operating and compliance costs or capital expenditures. Entities also may face regulatory penalties, as well as permit restrictions or delays from jurisdictional legal or regulatory authorities for non-compliance.
-
-
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.-
Water Management in Manufacturing
Biofuel refining is water-intensive. Biorefineries require water for feedstock processing, fermentation, distillation and cooling. Although water use at biorefineries is modest relative to the quantities consumed during feedstock crop production, it is concentrated, and thus may affect local water resources. Facilities also may generate wastewater containing salts, organic compounds, dissolved solids, phosphorus and other substances, requiring wastewater treatment. Biofuel refineries also may face reduced water availability, related cost increases or operational disruptions. Water extraction from particular areas for refining, as well as contamination of water supplies because of refining operations, also could create regulatory risk and tensions with local communities. Water efficiency in operations and the proper treatment of effluents are therefore important for biofuels entities.
-
-
Data Security
The category addresses management of risks related to collection, retention, and use of sensitive, confidential, and/or proprietary customer or user data. It includes social issues that may arise from incidents such as data breaches in which personally identifiable information (PII) and other user or customer data may be exposed. It addresses a company’s strategy, policies, and practices related to IT infrastructure, staff training, record keeping, cooperation with law enforcement, and other mechanisms used to ensure security of customer or user data.None -
Employee Engagement, Diversity & Inclusion
The category addresses a company’s ability to ensure that its culture and hiring and promotion practices embrace the building of a diverse and inclusive workforce that reflects the makeup of local talent pools and its customer base. It addresses the issues of discriminatory practices on the bases of race, gender, ethnicity, religion, sexual orientation, and other factors.None -
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.-
Lifecycle Emissions Balance
The rapid growth in global biofuels production has been encouraged by government energy policies that seek to reduce net GHG emissions from transportation fuels and dependence on fossil fuels. Most major renewable-fuel policies worldwide require that biofuels achieve lifecycle GHG emissions reductions relative to a fossil-fuel baseline to qualify for renewable fuel-mandate thresholds. The biofuel lifecycle emission calculation may include indirect and direct emissions from feedstock crop production and land use, fuel refining, fuel and feedstock transport, and vehicle exhaust emissions. Biofuel producers may influence net emissions directly during the refining process through energy management (fuel use), process innovations and by using feedstocks with lower emissions profiles. Fuel products that achieve a reduction in net emissions may qualify as advanced biofuels, which could increase future demand. Biofuel entities that cost-effectively reduce product net carbon emissions may gain a competitive product advantage, spur revenue growth and increase market share.
-
-
Supply Chain Management
The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.-
Sourcing & Environmental Impacts of Feedstock Production
The Biofuels industry uses a variety of plant-based feedstocks for production. Most entities purchase feedstocks from agricultural producers and distributors. A growing proportion of the world’s arable land now is occupied by biofuel crops. Unsustainable cultivation practices can have negative environmental externalities, including deforestation and biodiversity loss, soil degradation, and water pollution. These factors may affect feedstock crop yields adversely over the short- and long-term. This, in turn, may influence the price and availability of feedstocks for biofuels producers. Consequently, vetting the sustainability of supply chains, such as through certifications or engagement with suppliers, is an important consideration for biofuels producers.
-
-
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.None -
Management of the Legal & Regulatory Environment
The category addresses a company’s approach to engaging with regulators in cases where conflicting corporate and public interests may have the potential for long-term adverse direct or indirect environmental and social impacts. The category addresses a company’s level of reliance upon regulatory policy or monetary incentives (such as subsidies and taxes), actions to influence industry policy (such as through lobbying), overall reliance on a favorable regulatory environment for business competitiveness, and ability to comply with relevant regulations. It may relate to the alignment of management and investor views of regulatory engagement and compliance at large.-
Management of the Legal & Regulatory Environment
The Biofuels industry is dependent on government policies and regulations that create market demand and incentivise supply with tax breaks and other support for feedstock production. The Biofuels industry supports some regulations and policies related to renewable fuel policy, production tax credits and feedstock production. While regulatory support can result in positive short-term gains by supporting the biofuels market, the potential long-term adverse environmental impacts from feedstock and biofuels production may result in a reversal of beneficial policies, leading to a more uncertain regulatory environment. Consequently, biofuels entities may benefit from developing clear strategies for engaging regulators that are aligned with long-term sustainable business outcomes and that account for environmental externalities.
-
-
Critical Incident Risk Management
The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.-
Operational Safety, Emergency Preparedness & Response
Biofuel production presents operational safety hazards because of the presence of flammable and explosive substances, high temperatures, and pressurised equipment. Process safety incidents can damage facilities, injure workers, and affect the local environment and communities. Although the frequency of accidents in the industry is relatively low, when they do take place, the outcomes may be severe, with significant effects on financial performance. Damaged facilities may be inoperable for extended periods, resulting in lost revenues and large capital expenditures for repairs. Entities perceived to be at a greater risk of process safety incidents may have a higher cost of capital, while workforce injuries could result in regulatory penalties and litigation. Conversely, entities with a strong safety culture and operational safety oversight may detect and respond more effectively to such incidents, mitigating potential financial risks and improving operational efficiency.
-
-
Air Quality
-
Air Quality
Biofuel refineries generate air emissions that may include air pollutants and volatile organic compounds. Grain-handling equipment, boilers, wastewater treatment, and cooling, drying, distillation and fermentation units generate emissions. In most regions, such emissions typically are subject to jurisdictional regulations that limit emissions below specific thresholds. As a result, air emissions often are subject to emissions permits and abatement that may result in incremental operating and compliance costs or capital expenditures. Entities also may face regulatory penalties, as well as permit restrictions or delays from jurisdictional legal or regulatory authorities for non-compliance.
Water & Wastewater Management
-
Water Management in Manufacturing
Biofuel refining is water-intensive. Biorefineries require water for feedstock processing, fermentation, distillation and cooling. Although water use at biorefineries is modest relative to the quantities consumed during feedstock crop production, it is concentrated, and thus may affect local water resources. Facilities also may generate wastewater containing salts, organic compounds, dissolved solids, phosphorus and other substances, requiring wastewater treatment. Biofuel refineries also may face reduced water availability, related cost increases or operational disruptions. Water extraction from particular areas for refining, as well as contamination of water supplies because of refining operations, also could create regulatory risk and tensions with local communities. Water efficiency in operations and the proper treatment of effluents are therefore important for biofuels entities.
Data Security
-
Product Security
The hardware products and related software offered by entities in the Hardware industry may have vulnerabilities that expose consumers to data security threats. Therefore, hardware manufacturers must help ensure user data security. Such vulnerabilities may occur at any stage of a product lifecycle, including product design, the manufacturing supply chain, product distribution and the product’s use-phase. Entities in the industry unable to identify vulnerabilities may risk exposing consumer data to security threats and potentially eroding the trust of their customer base. Cybersecurity threats create both risks and opportunities for the Hardware industry, as effective product security may be a source of competitive advantage for entities, potentially increasing their sales and market share. Additionally, user concerns about data security and related government actions may also serve as revenue-generating opportunities for securing government contracts and providing security products.
Employee Engagement, Diversity & Inclusion
-
Employee Diversity & Inclusion
Greater workforce diversity is important for innovation since it helps entities understand the needs of a diverse and global customer base, which results in the ability to design desirable products and communicate with customers effectively. Entities unable to attract and retain diverse talent may risk losing market share to competitors that successfully employ a staff capable of recognising the needs of diverse populations and capturing demand from segments of the population that have been traditionally overlooked. Furthermore, entities perceived as being more representative of a diverse, global customer base may increase brand loyalty which also may be a source of competitive advantage. Entities successful in recruiting and retaining a diverse and inclusive workforce also may achieve lower employee turnover rates, resulting in cost savings.
Product Design & Lifecycle Management
-
Product Lifecycle Management
Entities in the Hardware industry face increasing challenges associated with environmental and social externalities attributed to product manufacturing, transport, use and disposal. Rapid obsolescence of hardware products may worsen these externalities. Entities are designing more products with the entire lifecycle in mind. Specific considerations include energy efficiency of products, hazardous material inputs, and designing for and facilitating safe end-of-life disposal and recycling. Entities that prioritise designing and manufacturing products with improved environmental and social impacts may avoid costs associated with externalities, and they may be more likely to grow consumer demand and market share, while eliminating potentially harmful materials. Furthermore, entities that minimise environmental and social externalities of products may be less exposed to increasing regulation and costs, such as those related to extended producer responsibility.
-
Lifecycle Emissions Balance
The rapid growth in global biofuels production has been encouraged by government energy policies that seek to reduce net GHG emissions from transportation fuels and dependence on fossil fuels. Most major renewable-fuel policies worldwide require that biofuels achieve lifecycle GHG emissions reductions relative to a fossil-fuel baseline to qualify for renewable fuel-mandate thresholds. The biofuel lifecycle emission calculation may include indirect and direct emissions from feedstock crop production and land use, fuel refining, fuel and feedstock transport, and vehicle exhaust emissions. Biofuel producers may influence net emissions directly during the refining process through energy management (fuel use), process innovations and by using feedstocks with lower emissions profiles. Fuel products that achieve a reduction in net emissions may qualify as advanced biofuels, which could increase future demand. Biofuel entities that cost-effectively reduce product net carbon emissions may gain a competitive product advantage, spur revenue growth and increase market share.
Supply Chain Management
-
Supply Chain Management
Entities in the Hardware industry commonly have relatively narrow profit margins and remain competitive by relying on complex, global supply chains and outsourced production to electronics manufacturing services (EMS) entities. Because entities in the industry typically contract with suppliers in countries with lower direct costs, entities often manufacture products in countries that have limited labour regulations or enforcement protecting workers. Entities in the industry may have limited direct control over social and environmental standards in production, making management of this issue difficult. This dynamic may increase an entity’s exposure to reputational risks and impacts on short- and long-term costs and sales. Such effects may arise from increasing regulation and enforcement in response to high-profile safety or labour incidents, or through a shift in demand away from entities associated with such incidents. Entities that actively manage the impacts generated by the supply chain using supplier standards, monitoring and engagement may better protect shareholder value over the long term.
-
Sourcing & Environmental Impacts of Feedstock Production
The Biofuels industry uses a variety of plant-based feedstocks for production. Most entities purchase feedstocks from agricultural producers and distributors. A growing proportion of the world’s arable land now is occupied by biofuel crops. Unsustainable cultivation practices can have negative environmental externalities, including deforestation and biodiversity loss, soil degradation, and water pollution. These factors may affect feedstock crop yields adversely over the short- and long-term. This, in turn, may influence the price and availability of feedstocks for biofuels producers. Consequently, vetting the sustainability of supply chains, such as through certifications or engagement with suppliers, is an important consideration for biofuels producers.
Materials Sourcing & Efficiency
-
Materials Sourcing
Entities in the Hardware industry rely on numerous critical materials as important inputs for finished products. Many of these inputs have few or no available substitutes and often are sourced from only a few countries, many of which may be subject to geopolitical uncertainty. Other sustainability impacts related to climate change, land use, resource scarcity and conflict in regions where the industry’s supply chain operates are also increasingly shaping the industry’s ability to source materials. Additionally, increased competition for these materials because of growing global demand from other sectors may result in price increases and supply risks. The ability of entities to manage potential material shortages, supply disruptions, price volatility and reputational risks is made more difficult by the practice of commonly sourcing materials from supply chains that may lack transparency. Failure to effectively manage sourcing may constrain access to necessary materials, reduce margins, impair revenue growth or increase costs of capital.
Management of the Legal & Regulatory Environment
-
Management of the Legal & Regulatory Environment
The Biofuels industry is dependent on government policies and regulations that create market demand and incentivise supply with tax breaks and other support for feedstock production. The Biofuels industry supports some regulations and policies related to renewable fuel policy, production tax credits and feedstock production. While regulatory support can result in positive short-term gains by supporting the biofuels market, the potential long-term adverse environmental impacts from feedstock and biofuels production may result in a reversal of beneficial policies, leading to a more uncertain regulatory environment. Consequently, biofuels entities may benefit from developing clear strategies for engaging regulators that are aligned with long-term sustainable business outcomes and that account for environmental externalities.
Critical Incident Risk Management
-
Operational Safety, Emergency Preparedness & Response
Biofuel production presents operational safety hazards because of the presence of flammable and explosive substances, high temperatures, and pressurised equipment. Process safety incidents can damage facilities, injure workers, and affect the local environment and communities. Although the frequency of accidents in the industry is relatively low, when they do take place, the outcomes may be severe, with significant effects on financial performance. Damaged facilities may be inoperable for extended periods, resulting in lost revenues and large capital expenditures for repairs. Entities perceived to be at a greater risk of process safety incidents may have a higher cost of capital, while workforce injuries could result in regulatory penalties and litigation. Conversely, entities with a strong safety culture and operational safety oversight may detect and respond more effectively to such incidents, mitigating potential financial risks and improving operational efficiency.