Industry Comparison
Select Language
Current language: English (2023)
You are viewing information about the following Industries:
-
Air Freight & Logistics
Air Freight & Logistics industry entities provide freight services and transportation logistics to both businesses and individuals. The industry consists of three main segments: air freight transportation, post and courier services, and transportation logistics services. Entities in the industry earn revenue from one or more of the segments and range from non-asset-based to asset-heavy. Transportation logistics services include contracting with road, rail, marine and air freight entities to select and hire appropriate transportation. Services also may include customs brokerage, distribution management, vendor consolidation, cargo insurance, purchase order management and customised logistics information. The industry is crucial to global trade, granting it a degree of demand stability. -
Semiconductors
Semiconductors industry entities design or manufacture semiconductor devices, integrated circuits, their raw materials and components, or capital equipment. Some entities in the industry provide outsourced manufacturing, assembly or other services for designers of semiconductor devices.
Relevant Issues for both Industries (13 of 26)
Why are some issues greyed out?
The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.-
Environment
-
GHG Emissions
The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). -
Air Quality
The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category. -
Energy Management
The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope. -
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution. -
Waste & Hazardous Materials Management
The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories. - Ecological Impacts
-
-
Social Capital
- Human Rights & Community Relations
- Customer Privacy
- Data Security
- Access & Affordability
- Product Quality & Safety
- Customer Welfare
- Selling Practices & Product Labeling
-
Human Capital
-
Labour Practices
The category addresses the company’s ability to uphold commonly accepted labour standards in the workplace, including compliance with labour laws and internationally accepted norms and standards. This includes, but is not limited to, ensuring basic human rights related to child labour, forced or bonded labour, exploitative labour, fair wages and overtime pay, and other basic workers’ rights. It also includes minimum wage policies and provision of benefits, which may influence how a workforce is attracted, retained, and motivated. The category further addresses a company’s relationship with organized labour and freedom of association. -
Employee Health & Safety
The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment. -
Employee Engagement, Diversity & Inclusion
The category addresses a company’s ability to ensure that its culture and hiring and promotion practices embrace the building of a diverse and inclusive workforce that reflects the makeup of local talent pools and its customer base. It addresses the issues of discriminatory practices on the bases of race, gender, ethnicity, religion, sexual orientation, and other factors.
-
-
Business Model and Innovation
-
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories. - Business Model Resilience
-
Supply Chain Management
The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category. -
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category. - Physical Impacts of Climate Change
-
-
Leadership and Governance
- Business Ethics
-
Competitive Behaviour
The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP). - Management of the Legal & Regulatory Environment
-
Critical Incident Risk Management
The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur. - Systemic Risk Management
Disclosure Topics
What is the relationship between General Issue Category and Disclosure Topics?
The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.-
Access Standard
-
GHG Emissions
The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).-
Greenhouse Gas Emissions
Air Freight & Logistics industry entities generate direct greenhouse gas (GHG) emissions that contribute to climate change. Emissions are generated from fuel combustion by both air and road freight operations. Given the altitude of the emissions from jet fuel, air freight makes an especially potent contribution to climate change. Management of GHG emissions is likely to affect air freight and logistics entities’ cost structure over time because emissions are tied directly to fuel use, and thus to operating expenses. Fuel efficiency and alternative fuels usage may reduce fuel costs or limit exposure to volatile fuel pricing, future regulatory costs and other consequences of GHG emissions. While newer aircraft and trucks are generally more fuel efficient, existing fleets may be retrofitted. Capital investments in more fuel-efficient aeroplanes or vehicles and emerging fuel-management technology may reduce fuel expenses and improve profitability. These investments also may help entities capture market share of customers seeking low-carbon shipping solutions.
-
-
Air Quality
The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.-
Air Quality
Entities in the Air Freight & Logistics industry generate air pollutants that may threaten human health. The industry’s primary air emissions include sulphur oxides (SOx), nitrogen oxides (NOx) and particulate matter (PM), which negatively affect local air quality. As regulators debate the most efficient mechanisms to reduce local air pollution from the industry, entities may be forced to increase operating costs or make investments to modernise their fleets because of regulatory pressure, customer demand and rising fuel costs. Use of more expensive alternative fuels and mechanisms that filter emissions prior to release into the atmosphere also may affect an entity’s cost structure, requiring upfront costs but decreasing regulatory exposure over the long term.
-
-
Energy Management
The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.None -
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.None -
Waste & Hazardous Materials Management
The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.None -
Labour Practices
The category addresses the company’s ability to uphold commonly accepted labour standards in the workplace, including compliance with labour laws and internationally accepted norms and standards. This includes, but is not limited to, ensuring basic human rights related to child labour, forced or bonded labour, exploitative labour, fair wages and overtime pay, and other basic workers’ rights. It also includes minimum wage policies and provision of benefits, which may influence how a workforce is attracted, retained, and motivated. The category further addresses a company’s relationship with organized labour and freedom of association.-
Labour Practices
The Air Freight & Logistic industry’s reliance on independent contractors, mainly for courier driving, has come under increasing legal and regulatory scrutiny. The applicable jurisdictional laws and regulations that protect employees may not cover independent contractors, and entities may face regulatory sanctions for misclassifying employees as independent contractors. Entities also may face legal actions from employee and contractor claims regarding wage payments, benefits and working conditions. Legal actions also may negatively affect an entity’s brand value and ability to hire and retain employees, reducing operational efficiency and increasing turnover costs.
-
-
Employee Health & Safety
The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.-
Workforce Health & Safety
The Air Freight & Logistics industry may expose employees to dangerous working conditions, including accidents resulting from mechanical failure or human error. Additionally, moving packages manually is a physical process that requires special training to minimise injury. Although the fatal occupational injury rate for trucking workers is higher than average, worker safety issues in aviation are regulated strictly, which raises the risk of fines or penalties when an incident occurs. Health and safety incidents may result in work stoppages and a range of costs, from medical expenses to workers’ compensation. Such incidents also may reduce productivity, and thus revenues, if employees believe their safety and well-being are being neglected. Finally, entities with poor safety records also may face increased insurance premiums and higher costs of capital, as well as reputational damage that may reduce revenue and market share. An entity may mitigate these effects by providing adequate employee protection and training, ensuring mechanical equipment is functioning safely, and establishing a culture of workplace safety.
-
-
Employee Engagement, Diversity & Inclusion
The category addresses a company’s ability to ensure that its culture and hiring and promotion practices embrace the building of a diverse and inclusive workforce that reflects the makeup of local talent pools and its customer base. It addresses the issues of discriminatory practices on the bases of race, gender, ethnicity, religion, sexual orientation, and other factors.None -
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.None -
Supply Chain Management
The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.-
Supply Chain Management
Many entities in the Air Freight & Logistics industry contract with large, complex networks of asset-based third-party providers to provide freight transportation services to their customers. Contracting is common among entities providing freight forwarding, logistics, brokerage and intermodal services. These contractors operate across all modes of transport such as motor carriers, railroads, air freight and ocean carriers. Entities must manage contractor relationships to ensure contractor actions that may result in environmental or social impacts do not result in material adverse effects on their own operations, such as decreased brand value. At the same time, entities that offer low-carbon logistics solutions may capture market share from customers seeking to reduce the carbon footprint of their shipments.
-
-
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.None -
Competitive Behaviour
The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).None -
Critical Incident Risk Management
The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.-
Accident & Safety Management
All modes of transportation pose safety risks. In some cases, mechanical failure or human error may result in accidents with significant environmental or social consequences, including regulatory action and lawsuits from impacted communities or customers. Although the stringency of regulatory requirements may vary by the region of operation, entities that maintain the highest safety standards throughout their global operations may minimise the risks of safety incidents that affect their reputation and profitability.
-
-
-
Access Standard
-
GHG Emissions
The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).-
Greenhouse Gas Emissions
Entities in the Semiconductors industry generate greenhouse gas (GHG) emissions, particularly those from perfluorinated compounds, from semiconductor manufacturing operations. GHG emissions may create regulatory compliance costs and operating risks for semiconductors entities, although resulting financial effects may vary depending on the magnitude of emissions and the prevailing emissions regulations. Entities that cost-effectively manage GHG emissions through greater energy efficiency, the use of alternative chemicals or manufacturing process advances may benefit from improved operating efficiency and reduced regulatory risk.
-
-
Air Quality
The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.None -
Energy Management
The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.-
Energy Management in Manufacturing
Energy is a critical input for manufacturing semiconductor devices. The price of conventional grid electricity and volatility of fossil fuel prices may increase because of evolving climate change regulations and new incentives for energy efficiency and renewable energy, among other factors, while alternative energy sources become more cost-competitive. Decisions regarding energy sourcing and type, as well as alternative energy use, may create trade-offs related to the energy supply’s cost and reliability for operations. As industry innovation adds complexity to manufacturing processes, new technologies to manufacture semiconductors may consume more energy unless entities invest in the energy efficiency of their operations. The way an entity manages energy efficiency, reliance on different types of energy, the associated sustainability risks, and alternative energy source access may affect financial performance.
-
-
Water & Wastewater Management
The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.-
Water Management
Water is critical to the semiconductor production process, which requires significant volumes of ‘ultra-pure’ water for cleaning purposes, to avoid trace molecules from affecting product quality. As manufacturing becomes more complex, entities in the industry are discovering the importance of reducing ultra-pure water use. Water is becoming a scarce resource around the world, because of increasing consumption from population growth and rapid urbanisation, and reduced supplies because of climate change. Furthermore, water pollution in developing countries makes available water supplies unusable or expensive to treat. Without careful planning, water scarcity may result in higher supply costs, social tensions with local communities and governments, or loss of water access in water-scarce regions, thereby presenting a critical risk to production. Semiconductor entities that increase water use efficiency during manufacturing may maintain a lower risk profile and face reduced regulatory risks as local, regional and national environmental laws place increasing emphasis on resource conservation.
-
-
Waste & Hazardous Materials Management
The category addresses environmental issues associated with hazardous and non-hazardous waste generated by companies. It addresses a company’s management of solid wastes in manufacturing, agriculture, and other industrial processes. It covers treatment, handling, storage, disposal, and regulatory compliance. The category does not cover emissions to air or wastewater nor does it cover waste from end-of-life of products, which are addressed in separate categories.-
Waste Management
Semiconductor manufacturing requires hazardous materials, many of which are subject to environmental, health and safety regulations, and generate harmful waste, which may be released into the environment in the form of water and air emissions, as well as solid waste. The handling and disposal of hazardous wastes produced during manufacturing may result in increased operating costs, capital expenditures, and in some instances, regulatory costs. Entities that reduce waste produced during manufacturing and ensure it is reused, recycled or disposed of appropriately may achieve a lower risk profile and face reduced regulatory risks as local, regional and national environmental laws place increasing emphasis on resource conservation and waste management.
-
-
Labour Practices
The category addresses the company’s ability to uphold commonly accepted labour standards in the workplace, including compliance with labour laws and internationally accepted norms and standards. This includes, but is not limited to, ensuring basic human rights related to child labour, forced or bonded labour, exploitative labour, fair wages and overtime pay, and other basic workers’ rights. It also includes minimum wage policies and provision of benefits, which may influence how a workforce is attracted, retained, and motivated. The category further addresses a company’s relationship with organized labour and freedom of association.None -
Employee Health & Safety
The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.-
Workforce Health & Safety
The long-term effects of chemical usage in semiconductor manufacturing on worker health is a major area of concern for the industry. Workers in fabrication facilities, particularly maintenance workers, are at risk of exposure to chemicals known to be hazardous to human health. Violations of health and safety standards may result in monetary penalties and additional costs of corrective actions, with effects on net profits and contingent liabilities. Furthermore, such violations also may result in non-monetary penalties and reputational impacts which may decrease revenues, as well as market share. Effective management of health and safety issues include implementing effective engineering controls, introducing less hazardous chemicals if possible or using smaller amounts, and seeking chemicals presenting the fewest risks to the workforce. In addition to protecting brand value, entities taking these measures may also protect themselves from adverse legal outcomes related to both regulated and unregulated hazardous substances.
-
-
Employee Engagement, Diversity & Inclusion
The category addresses a company’s ability to ensure that its culture and hiring and promotion practices embrace the building of a diverse and inclusive workforce that reflects the makeup of local talent pools and its customer base. It addresses the issues of discriminatory practices on the bases of race, gender, ethnicity, religion, sexual orientation, and other factors.-
Recruiting & Managing a Global & Skilled Workforce
Employees are important contributors to value creation in the Semiconductors industry. Entities face competition and challenges in recruiting qualified employees globally, including electrical engineers, research scientists and process engineers. Compensation for such employees is a significant cost component for the industry. Semiconductors entities may improve their competitive positioning by establishing education, training and recruitment policies that develop and leverage the talents of skilled, global employees to meet their human capital needs. Such initiatives may help drive innovation and improve worker productivity, thereby improving access to new markets and possible new sources of revenue, while also creating a more engaged workforce and reducing employee turnover.
-
-
Product Design & Lifecycle Management
The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.-
Product Lifecycle Management
As an increasing number of devices become connected to each other and to the internet, semiconductor entities face greater demand for products that increase computing power and decrease energy costs. Semiconductor machinery and device manufacturers may reduce the environmental and human health impacts of their products by increasing the energy-efficiency of equipment and chips and reducing the use of harmful materials in products. As consumer demand grows for energy-efficient devices that increase battery life, reduce heat output and decrease energy consumption, semiconductor manufacturers that satisfy these may gain a competitive advantage, driving revenue and market share growth. Entities also may benefit from reducing the use of toxic materials from chips destined for consumer devices, which has implications for the end-of-life management of electronic waste, an issue of growing legislative importance in many countries.
-
-
Supply Chain Management
The category addresses management of environmental, social, and governance (ESG) risks within a company’s supply chain. It addresses issues associated with environmental and social externalities created by suppliers through their operational activities. Such issues include, but are not limited to, environmental responsibility, human rights, labour practices, and ethics and corruption. Management may involve screening, selection, monitoring, and engagement with suppliers on their environmental and social impacts. The category does not address the impacts of external factors – such as climate change and other environmental and social factors – on suppliers’ operations and/or on the availability and pricing of key resources, which is covered in a separate category.None -
Materials Sourcing & Efficiency
The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.-
Materials Sourcing
Entities in the Semiconductors industry rely on numerous critical materials as important inputs for finished products. Many of these inputs have few or no available substitutes and often are sourced from only a few countries, many of which may be subject to geopolitical uncertainty. Other sustainability impacts related to climate change, land use, resource scarcity and conflict in regions where the industry’s supply chain operates are also increasingly shaping the industry’s ability to source materials. Additionally, increased competition for these materials because of growing global demand from other sectors may result in price increases and supply risks. The management of potential materials shortages, supply disruptions, price volatility and reputational risks is made more difficult by the practice of commonly sourcing materials from supply chains that often lack transparency. Failure to effectively manage this issue may constrain access to necessary materials, reduce margins, impair revenue growth or increase costs of capital.
-
-
Competitive Behaviour
The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).-
Intellectual Property Protection & Competitive Behaviour
Although intellectual property (IP) protection is inherent to the Semiconductors industry business model, entities’ IP practices may be a contentious social issue. IP protection can be an important driver of innovation, but some entities may also acquire and enforce patents and other IP protection to restrict competition, particularly if they are dominant market players. Industry standard-setting can involve complex negotiations over patent rights and licensing terms, and entities use cross-licenses and patent pools to address difficulties around patent thickets. However, such industry cooperation also may raise antitrust concerns, for example, with provisions in portfolio cross-licenses that could enable price fixing. Adverse legal or regulatory rulings related to antitrust and IP may expose software and IT services entities to costly and lengthy litigations and potential monetary losses as a result. Such rulings may also affect an entity’s market share and pricing power, if its patents or dominant position in important markets are challenged legally, with significant financial consequences. Therefore, entities that balance the IP protection and its use to spur innovation and ensure their IP management and other business practices do not unfairly restrict competition may reduce regulatory scrutiny and legal actions while protecting market value.
-
-
Critical Incident Risk Management
The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.None
-
General Issue Category
Remove
Air Freight & Logistics
Access Standard
Remove
Semiconductors
Access Standard
GHG Emissions
-
Greenhouse Gas Emissions
Air Freight & Logistics industry entities generate direct greenhouse gas (GHG) emissions that contribute to climate change. Emissions are generated from fuel combustion by both air and road freight operations. Given the altitude of the emissions from jet fuel, air freight makes an especially potent contribution to climate change. Management of GHG emissions is likely to affect air freight and logistics entities’ cost structure over time because emissions are tied directly to fuel use, and thus to operating expenses. Fuel efficiency and alternative fuels usage may reduce fuel costs or limit exposure to volatile fuel pricing, future regulatory costs and other consequences of GHG emissions. While newer aircraft and trucks are generally more fuel efficient, existing fleets may be retrofitted. Capital investments in more fuel-efficient aeroplanes or vehicles and emerging fuel-management technology may reduce fuel expenses and improve profitability. These investments also may help entities capture market share of customers seeking low-carbon shipping solutions.
-
Greenhouse Gas Emissions
Entities in the Semiconductors industry generate greenhouse gas (GHG) emissions, particularly those from perfluorinated compounds, from semiconductor manufacturing operations. GHG emissions may create regulatory compliance costs and operating risks for semiconductors entities, although resulting financial effects may vary depending on the magnitude of emissions and the prevailing emissions regulations. Entities that cost-effectively manage GHG emissions through greater energy efficiency, the use of alternative chemicals or manufacturing process advances may benefit from improved operating efficiency and reduced regulatory risk.
Air Quality
-
Air Quality
Entities in the Air Freight & Logistics industry generate air pollutants that may threaten human health. The industry’s primary air emissions include sulphur oxides (SOx), nitrogen oxides (NOx) and particulate matter (PM), which negatively affect local air quality. As regulators debate the most efficient mechanisms to reduce local air pollution from the industry, entities may be forced to increase operating costs or make investments to modernise their fleets because of regulatory pressure, customer demand and rising fuel costs. Use of more expensive alternative fuels and mechanisms that filter emissions prior to release into the atmosphere also may affect an entity’s cost structure, requiring upfront costs but decreasing regulatory exposure over the long term.
Energy Management
-
Energy Management in Manufacturing
Energy is a critical input for manufacturing semiconductor devices. The price of conventional grid electricity and volatility of fossil fuel prices may increase because of evolving climate change regulations and new incentives for energy efficiency and renewable energy, among other factors, while alternative energy sources become more cost-competitive. Decisions regarding energy sourcing and type, as well as alternative energy use, may create trade-offs related to the energy supply’s cost and reliability for operations. As industry innovation adds complexity to manufacturing processes, new technologies to manufacture semiconductors may consume more energy unless entities invest in the energy efficiency of their operations. The way an entity manages energy efficiency, reliance on different types of energy, the associated sustainability risks, and alternative energy source access may affect financial performance.
Water & Wastewater Management
-
Water Management
Water is critical to the semiconductor production process, which requires significant volumes of ‘ultra-pure’ water for cleaning purposes, to avoid trace molecules from affecting product quality. As manufacturing becomes more complex, entities in the industry are discovering the importance of reducing ultra-pure water use. Water is becoming a scarce resource around the world, because of increasing consumption from population growth and rapid urbanisation, and reduced supplies because of climate change. Furthermore, water pollution in developing countries makes available water supplies unusable or expensive to treat. Without careful planning, water scarcity may result in higher supply costs, social tensions with local communities and governments, or loss of water access in water-scarce regions, thereby presenting a critical risk to production. Semiconductor entities that increase water use efficiency during manufacturing may maintain a lower risk profile and face reduced regulatory risks as local, regional and national environmental laws place increasing emphasis on resource conservation.
Waste & Hazardous Materials Management
-
Waste Management
Semiconductor manufacturing requires hazardous materials, many of which are subject to environmental, health and safety regulations, and generate harmful waste, which may be released into the environment in the form of water and air emissions, as well as solid waste. The handling and disposal of hazardous wastes produced during manufacturing may result in increased operating costs, capital expenditures, and in some instances, regulatory costs. Entities that reduce waste produced during manufacturing and ensure it is reused, recycled or disposed of appropriately may achieve a lower risk profile and face reduced regulatory risks as local, regional and national environmental laws place increasing emphasis on resource conservation and waste management.
Labour Practices
-
Labour Practices
The Air Freight & Logistic industry’s reliance on independent contractors, mainly for courier driving, has come under increasing legal and regulatory scrutiny. The applicable jurisdictional laws and regulations that protect employees may not cover independent contractors, and entities may face regulatory sanctions for misclassifying employees as independent contractors. Entities also may face legal actions from employee and contractor claims regarding wage payments, benefits and working conditions. Legal actions also may negatively affect an entity’s brand value and ability to hire and retain employees, reducing operational efficiency and increasing turnover costs.
Employee Health & Safety
-
Workforce Health & Safety
The Air Freight & Logistics industry may expose employees to dangerous working conditions, including accidents resulting from mechanical failure or human error. Additionally, moving packages manually is a physical process that requires special training to minimise injury. Although the fatal occupational injury rate for trucking workers is higher than average, worker safety issues in aviation are regulated strictly, which raises the risk of fines or penalties when an incident occurs. Health and safety incidents may result in work stoppages and a range of costs, from medical expenses to workers’ compensation. Such incidents also may reduce productivity, and thus revenues, if employees believe their safety and well-being are being neglected. Finally, entities with poor safety records also may face increased insurance premiums and higher costs of capital, as well as reputational damage that may reduce revenue and market share. An entity may mitigate these effects by providing adequate employee protection and training, ensuring mechanical equipment is functioning safely, and establishing a culture of workplace safety.
-
Workforce Health & Safety
The long-term effects of chemical usage in semiconductor manufacturing on worker health is a major area of concern for the industry. Workers in fabrication facilities, particularly maintenance workers, are at risk of exposure to chemicals known to be hazardous to human health. Violations of health and safety standards may result in monetary penalties and additional costs of corrective actions, with effects on net profits and contingent liabilities. Furthermore, such violations also may result in non-monetary penalties and reputational impacts which may decrease revenues, as well as market share. Effective management of health and safety issues include implementing effective engineering controls, introducing less hazardous chemicals if possible or using smaller amounts, and seeking chemicals presenting the fewest risks to the workforce. In addition to protecting brand value, entities taking these measures may also protect themselves from adverse legal outcomes related to both regulated and unregulated hazardous substances.
Employee Engagement, Diversity & Inclusion
-
Recruiting & Managing a Global & Skilled Workforce
Employees are important contributors to value creation in the Semiconductors industry. Entities face competition and challenges in recruiting qualified employees globally, including electrical engineers, research scientists and process engineers. Compensation for such employees is a significant cost component for the industry. Semiconductors entities may improve their competitive positioning by establishing education, training and recruitment policies that develop and leverage the talents of skilled, global employees to meet their human capital needs. Such initiatives may help drive innovation and improve worker productivity, thereby improving access to new markets and possible new sources of revenue, while also creating a more engaged workforce and reducing employee turnover.
Product Design & Lifecycle Management
-
Product Lifecycle Management
As an increasing number of devices become connected to each other and to the internet, semiconductor entities face greater demand for products that increase computing power and decrease energy costs. Semiconductor machinery and device manufacturers may reduce the environmental and human health impacts of their products by increasing the energy-efficiency of equipment and chips and reducing the use of harmful materials in products. As consumer demand grows for energy-efficient devices that increase battery life, reduce heat output and decrease energy consumption, semiconductor manufacturers that satisfy these may gain a competitive advantage, driving revenue and market share growth. Entities also may benefit from reducing the use of toxic materials from chips destined for consumer devices, which has implications for the end-of-life management of electronic waste, an issue of growing legislative importance in many countries.
Supply Chain Management
-
Supply Chain Management
Many entities in the Air Freight & Logistics industry contract with large, complex networks of asset-based third-party providers to provide freight transportation services to their customers. Contracting is common among entities providing freight forwarding, logistics, brokerage and intermodal services. These contractors operate across all modes of transport such as motor carriers, railroads, air freight and ocean carriers. Entities must manage contractor relationships to ensure contractor actions that may result in environmental or social impacts do not result in material adverse effects on their own operations, such as decreased brand value. At the same time, entities that offer low-carbon logistics solutions may capture market share from customers seeking to reduce the carbon footprint of their shipments.
Materials Sourcing & Efficiency
-
Materials Sourcing
Entities in the Semiconductors industry rely on numerous critical materials as important inputs for finished products. Many of these inputs have few or no available substitutes and often are sourced from only a few countries, many of which may be subject to geopolitical uncertainty. Other sustainability impacts related to climate change, land use, resource scarcity and conflict in regions where the industry’s supply chain operates are also increasingly shaping the industry’s ability to source materials. Additionally, increased competition for these materials because of growing global demand from other sectors may result in price increases and supply risks. The management of potential materials shortages, supply disruptions, price volatility and reputational risks is made more difficult by the practice of commonly sourcing materials from supply chains that often lack transparency. Failure to effectively manage this issue may constrain access to necessary materials, reduce margins, impair revenue growth or increase costs of capital.
Competitive Behaviour
-
Intellectual Property Protection & Competitive Behaviour
Although intellectual property (IP) protection is inherent to the Semiconductors industry business model, entities’ IP practices may be a contentious social issue. IP protection can be an important driver of innovation, but some entities may also acquire and enforce patents and other IP protection to restrict competition, particularly if they are dominant market players. Industry standard-setting can involve complex negotiations over patent rights and licensing terms, and entities use cross-licenses and patent pools to address difficulties around patent thickets. However, such industry cooperation also may raise antitrust concerns, for example, with provisions in portfolio cross-licenses that could enable price fixing. Adverse legal or regulatory rulings related to antitrust and IP may expose software and IT services entities to costly and lengthy litigations and potential monetary losses as a result. Such rulings may also affect an entity’s market share and pricing power, if its patents or dominant position in important markets are challenged legally, with significant financial consequences. Therefore, entities that balance the IP protection and its use to spur innovation and ensure their IP management and other business practices do not unfairly restrict competition may reduce regulatory scrutiny and legal actions while protecting market value.
Critical Incident Risk Management
-
Accident & Safety Management
All modes of transportation pose safety risks. In some cases, mechanical failure or human error may result in accidents with significant environmental or social consequences, including regulatory action and lawsuits from impacted communities or customers. Although the stringency of regulatory requirements may vary by the region of operation, entities that maintain the highest safety standards throughout their global operations may minimise the risks of safety incidents that affect their reputation and profitability.