Industry Comparison

You are viewing information about the following Industries:

  • Rail Transportation Rail Transportation industry entities provide rail freight shipping and support services. Important activities include shipping containerised and bulk freight, including consumer goods and commodities. Rail entities typically own, maintain and operate their rail networks, which may require significant capital expenditures. The industry exhibits economies of density because of its network effects, potentially fostering natural monopoly conditions. Together with the large sunk costs of rail infrastructure, this provides a competitive advantage to incumbent entities in the industry and creates barriers to entry for new entities.
    Remove
  • Real Estate Real Estate industry entities own, develop and operate income-producing real estate assets. Entities in this industry commonly are structured as real estate investment trusts (REITs) and operate in a wide range of real estate industry segments, including residential, retail, office, health care, industrial and hotel properties. REITs typically participate in direct real estate asset ownership, thereby providing investors with the opportunity to obtain real estate exposure without direct asset ownership and management. Although REITs often concentrate on individual Real Estate industry segments, many REITs diversify investments across multiple property types.
    Remove

Relevant Issues for both Industries (9 of 26)

Why are some issues greyed out? The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.

Disclosure Topics

What is the relationship between General Issue Category and Disclosure Topics? The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.
  • Rail Transportation Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      • Greenhouse Gas Emissions The Rail Transportation industry generates emissions mainly through the combustion of diesel in locomotive engines. Despite relatively low emissions compared to other transportation industries, fuel management has implications for industry entities in terms of operating costs and regulatory compliance. Greenhouse gases (GHGs) including carbon dioxide (CO2) are of particular importance to government regulators concerned about climate change. Intensifying regulation of locomotive exhaust emissions and high fuel costs encourage rail entities to invest in fuel efficiency enhancements to manage emissions. These investments can improve an entity’s operational efficiency and cost structure, with effects on value and competitive position both within the industry and compared to other modes of transport.
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      • Air Quality Rail operations emit several types of air pollutants regulated under national and international laws. These air pollutants can create significant and localised environmental and health impacts. For example, locomotive engines idling at rail yards may be a health concern for nearby human populations because HAPs such as benzene are known human carcinogens. Nitrogen oxides (NOx) are a major component of smog and acid rain. At the same time, fuel is a significant industry cost. Rail entities that implement fuel efficiency enhancements and manage emissions may witness reduced costs in both the short and longer term.
    • Energy Management The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.
      None
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      None
    • Employee Health & Safety The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.
      • Workforce Health & Safety Moving freight by rail includes the risk of accidents and unintended releases of hazardous materials. These events may harm employee health and well-being as well as have negative financial effects on entities, such as reduced productivity, higher employee turnover and increased insurance costs. Poor employee health also may cause accidents. A healthy workforce, strong safety culture, thorough and systematic approach to safety, risk management programmes (including emergency preparedness and response), and operational integrity at all levels of an entity may reduce the probability and magnitude of rail accidents.
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      None
    • Physical Impacts of Climate Change The category addresses the company’s ability to manage risks and opportunities associated with direct exposure of its owned or controlled assets and operations to actual or potential physical impacts of climate change. It captures environmental and social issues that may arise from operational disruptions due to physical impacts of climate change. It further captures socio-economic issues resulting from companies failing to incorporate climate change consideration in products and services sold, such as insurance policies and mortgages. The category relates to the company’s ability to adapt to increased frequency and severity of extreme weather, shifting climate, sea level risk, and other expected physical impacts of climate change. Management may involve enhancing resiliency of physical assets and/or surrounding infrastructure as well as incorporation of climate change-related considerations into key business activities (e.g., mortgage and insurance underwriting, planning and development of real estate projects).
      None
    • Competitive Behaviour The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).
      • Competitive Behaviour Industry consolidation and prior allegations of anti-competitive practices in relation to captive shippers, among other reasons, threaten the anti-trust immunity granted to railroads in some regions. Some of the proposed policy changes may result in significant costs or impede investment in the industry. Rail entities operating at the limits of allowable charges in areas where they have market dominance, or those not complying with applicable jurisdictional legally or regulatory enforced rate structures, may face increased regulatory scrutiny. Any associated fines or penalties may affect an entity’s valuation negatively by increasing its cost of capital. In an environment of increased concerns about the market power and pricing practices of rail entities, competitive pricing and transparency in rate-setting while achieving adequate returns on investment is in their continued best interest.
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      • Accident & Safety Management Rail accidents and unintended releases of hazardous materials have negative repercussions for the environment and communities along railroad tracks, as well as financial effects on entities themselves. Increasingly stringent safety regulations and the potential for significant costs following major accidents encourage entities to manage their safety performance with robust safety management systems. In addition, losing consumer confidence after such events may reduce revenues and damage an entity’s social licence to operate, increasing its cost of capital.
  • Real Estate Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      None
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      None
    • Energy Management The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.
      • Energy Management Real estate assets consume significant amounts of energy for space heating, ventilating, air conditioning, water heating, lighting and using equipment and appliances. The type and magnitude of energy used and strategies for energy management are dependent upon the real estate asset class, among other factors. Generally, grid electricity is the predominant form of consumed energy, though on-site fuel combustion and renewable energy production also serve important roles. Energy costs may be borne by entities or property occupants; either way, energy management is a significant industry issue. To the extent that the real estate owner assumes direct responsibility for energy costs, such costs often represent significant operating costs, indicating the importance of energy management. Energy pricing volatility and a general trend of electricity price increases, energy-related regulations, potentially wide variations in energy performance in existing building stock, and opportunities for efficiency improvements through economically attractive capital investments all show the importance of energy management. Energy costs assumed by occupants, either in whole or in part, are nonetheless likely to affect entities through various channels. Building energy performance is a notable driver of tenant demand, because it allows them to control operating costs, mitigate potential environmental impacts, and, often just as importantly, maintain a reputation for resource conservation. Additionally, real estate owners may be exposed to energy-related regulations even if energy costs are the occupants’ responsibility. Overall, entities that effectively manage asset energy performance may realise reduced operating costs and regulatory risks, as well as increased tenant demand, rental rates and occupancy rates—all of which drive revenue and asset value appreciation. Improving energy performance is dependent upon property type and location, target tenant market, local building codes, physical and legal opportunities to deploy distributed renewable energy, the ability to measure consumption, and existing building stock, among other factors.
    • Water & Wastewater Management The category addresses a company’s water use, water consumption, wastewater generation, and other impacts of operations on water resources, which may be influenced by regional differences in the availability and quality of and competition for water resources. More specifically, it addresses management strategies including, but not limited to, water efficiency, intensity, and recycling. Lastly, the category also addresses management of wastewater treatment and discharge, including groundwater and aquifer pollution.
      • Water Management Buildings consume significant amounts of water in their operations, through water fixtures, building equipment, appliances and irrigation. Water consumption operating costs may be significant depending on property type, tenant operations, geographical locations and other factors. Entities can be responsible for a building’s water costs, or common area water costs, though entities commonly allocate all, or a portion, of these costs to occupants. In these arrangements, water management through tenant demand and regulatory exposure continues to be important. Tenants may assess real estate asset water efficiency to control operating costs, mitigate environmental impacts of operations, and, often just as importantly, develop a reputation for resource conservation. Additionally, real estate owners may comply with water-related regulations even if water costs are the occupants’ responsibility. Overall, entities that effectively manage asset water efficiency, even if they bear no direct water costs, may realise reduced operating costs and regulatory exposure, as well as increased tenant demand, rental rates and occupancy rates—all of which drive revenue and asset value appreciation. Long-term historic water expense increases and expectations of continued increases because of overconsumption and constrained supplies resulting from population growth and shifts, pollution and climate change show the importance of water management. Improving asset water efficiency is dependent upon the property type, water availability, target tenant market, local building codes, the ability to measure consumption and the existing building stock, among other factors.
    • Employee Health & Safety The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.
      None
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      • Management of Tenant Sustainability Impacts Real estate assets generate significant sustainability impacts, including resource consumption (energy and water), waste generation and impacts on occupant health through indoor environmental quality. While entities own real estate assets, the tenant operations of such assets dominate the sustainability impacts produced by the built environment. Tenants may design and construct leased spaces according to their operating needs. In turn, their operations consume significant amounts of energy and water, generate waste, and impact the health of those living, working, shopping, or visiting the properties. While these sustainability impacts often are often generated by tenant operations and activities, real estate owners play an important role in influencing tenant sustainability impacts. The way entities in the industry structure their agreements, contracts and relationships with tenants may be instrumental in managing the sustainability impacts of their tenants effectively, and ultimately, the impacts of their assets. Managing tenant sustainability impacts may include mitigating the problem of split incentives by aligning both parties’ financial interests with sustainability outcomes, establishing systematic measurement and communication of resource consumption data, creating shared performance goals, and mandating minimum sustainability performance or design requirements, among other strategies. Effective management of tenant sustainability impacts, particularly related to energy, water and indoor environmental quality, may drive asset value appreciation, increase tenant demand and satisfaction, decrease direct operating costs, or decrease risks related to building codes and regulations.
    • Physical Impacts of Climate Change The category addresses the company’s ability to manage risks and opportunities associated with direct exposure of its owned or controlled assets and operations to actual or potential physical impacts of climate change. It captures environmental and social issues that may arise from operational disruptions due to physical impacts of climate change. It further captures socio-economic issues resulting from companies failing to incorporate climate change consideration in products and services sold, such as insurance policies and mortgages. The category relates to the company’s ability to adapt to increased frequency and severity of extreme weather, shifting climate, sea level risk, and other expected physical impacts of climate change. Management may involve enhancing resiliency of physical assets and/or surrounding infrastructure as well as incorporation of climate change-related considerations into key business activities (e.g., mortgage and insurance underwriting, planning and development of real estate projects).
      • Climate Change Adaptation Climate change affects entities in the industry via frequent or high-impact extreme weather events and changing climate patterns. How an entity structures its business model to incorporate assessments of climate change risks, and the adaptation to such risks, may increasingly be relevant to entity value over the long-term. More specifically, investment strategies with assets located on floodplains and in coastal regions exposed to inclement weather may require increased risk mitigation and business model adaptation to long-term climate change. These strategies are especially important considering the long-term challenges associated with flood insurance rates, the financial stability of government-subsidised flood insurance programs, and financing stipulations or other creditor concerns. Besides insurance, other risk mitigation measures include improvements to physical asset resiliency and lease terms that transfer risk to tenants, although these measures can create their own costs and risks for real estate entities. To ensure long-term growth, entities must implement comprehensive climate change adaptation strategies, account for trade-offs between various risk mitigation strategies, and integrate all projected cost and benefit considerations over the long-term.
    • Competitive Behaviour The category covers social issues associated with existence of monopolies, which may include, but are not limited to, excessive prices, poor quality of service, and inefficiencies. It addresses a company’s management of legal and social expectation around monopolistic and anti-competitive practices, including issues related to bargaining power, collusion, price fixing or manipulation, and protection of patents and intellectual property (IP).
      None
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      None

Select up to 4 industries

Current Industries:
Rail Transportation
|
Real Estate
Infrastructure
Transportation
Consumer Goods
Extractives & Minerals Processing
Financials
Food & Beverage
Health Care
Renewable Resources & Alternative Energy
Resource Transformation
Services
Technology & Communications