Industry Comparison

You are viewing information about the following Industries:

  • Industrial Machinery & Goods Industrial machinery and goods industry entities manufacture equipment for a variety of industries including construction, agriculture, energy, utility, mining, manufacturing, automotive and transportation. Products include engines, earth-moving equipment, trucks, tractors, ships, industrial pumps, locomotives and turbines. Machinery manufacturers use large amounts of raw materials for production, including steel, plastics, rubber, paints and glass. Manufacturers also may machine and cast parts before final assembly. Demand in the industry is tied closely to industrial production, while government emissions standards and customer demand are encouraging innovations to improve energy efficiency and limit air emissions during product use.
    Remove
  • Marine Transportation Marine Transportation industry entities provide deep-sea, coastal or river-way freight shipping services. The industry is of strategic importance to international trade, and its revenues are tied to macroeconomic cycles. Important activities include transportation of containerised and bulk freight, including consumer goods and a wide range of commodities, and transportation of chemicals and petroleum products in tankers. Because of the industry's global scope, entities may operate under many diverse applicable jurisdictional legal and regulatory frameworks.
    Remove

Relevant Issues for both Industries (9 of 26)

Why are some issues greyed out? The SASB Standards vary by industry based on the different sustainability-related risks and opportunities within an industry. The issues in grey were not identified during the standard-setting process as the most likely to be useful to investors, so they are not included in the Standard. Over time, as the ISSB continues to receive market feedback, some issues may be added or removed from the Standard. Each company determines which sustainability-related risks and opportunities are relevant to its business. The Standard is designed for the typical company in an industry, but individual companies may choose to report on different sustainability-related risks and opportunities based on their unique business model.

Disclosure Topics

What is the relationship between General Issue Category and Disclosure Topics? The General Issue Category is an industry-agnostic version of the Disclosure Topics that appear in each SASB Standard. Disclosure topics represent the industry-specific impacts of General Issue Categories. The industry-specific Disclosure Topics ensure each SASB Standard is tailored to the industry, while the General Issue Categories enable comparability across industries. For example, Health & Nutrition is a disclosure topic in the Non-Alcoholic Beverages industry, representing an industry-specific measure of the general issue of Customer Welfare. The issue of Customer Welfare, however, manifests as the Counterfeit Drugs disclosure topic in the Biotechnology & Pharmaceuticals industry.
  • Industrial Machinery & Goods Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      None
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      None
    • Energy Management The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.
      • Energy Management Energy is a critical input in industrial machinery manufacturing. Purchased electricity is the largest share of energy expenditure in the industry, followed by purchased fuels. The type of energy used, amount consumed and energy management strategies depend on the type of products manufactured. Including the use of electricity generated on site, grid-sourced electricity and alternative energy, an entity’s energy mix can influence the cost and reliability of energy supply and, ultimately, affect the entity’s cost structure and regulatory risk.
    • Ecological Impacts The category addresses management of the company’s impacts on ecosystems and biodiversity through activities including, but not limited to, land use for exploration, natural resource extraction, and cultivation, as well as project development, construction, and siting. The impacts include, but are not limited to, biodiversity loss, habitat destruction, and deforestation at all stages – planning, land acquisition, permitting, development, operations, and site remediation. The category does not cover impacts of climate change on ecosystems and biodiversity.
      None
    • Employee Health & Safety The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.
      • Workforce Health & Safety Employees in industrial machinery manufacturing facilities face health and safety risks from exposure to heavy machinery, moving equipment and electrical hazards, among others. Creating an effective safety culture is critical to mitigate safety incidents proactively, which may result in reduced healthcare costs, litigation and work disruption. By implementing strong safety protocols, including incident reporting and investigation, and promoting a culture of safety, entities can minimise safety-related expenses and potentially improve productivity in the long term.
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      • Fuel Economy & Emissions in Use-phase Many of the Industrial Machinery & Goods industry’s products are powered by fossil fuels and release greenhouse gases (GHGs) and other air emissions during use. Customer preferences for improved fuel economy combined with regulations restricting emissions are increasing the demand for energy-efficient and lower-emission products in the industry. As such, entities that develop products with these characteristics may capture expanding market share, reduce regulatory risk and improve brand value.
    • Materials Sourcing & Efficiency The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.
      • Materials Sourcing Industrial machinery entities are exposed to supply chain risks when critical materials are used in products. Entities in the industry manufacture products using critical materials with few or no available substitutes, many of which are sourced in only a few countries, which may be subject to geopolitical uncertainty. Entities in this industry also face competition because of increasing global demand for these materials from other sectors, which may result in price increases and supply risks. Entities that limit the use of critical materials by using alternatives, as well as securing supply, may mitigate financial effects stemming from supply disruptions and volatile input prices.
      • Remanufacturing Design & Services Industrial machinery and goods manufacturing uses large quantities of steel, iron, aluminium, glass, plastics and other materials. Remanufacturing industrial machinery systems (called ‘cores’) presents an opportunity for industrial machinery entities to limit the quantity of raw materials needed to produce new machinery, as well as reduce the time and other resources required to produce finished goods. Remanufactured products also may create value from products otherwise destined for disposal or recycling. Industrial machinery entities may achieve cost savings by reusing end-of-life parts to build remanufactured machines, which may be resold to customers. Thus, remanufacturing in process and design may reduce demand for raw materials, decrease manufacturing costs and create new sales channels.
    • Business Ethics The category addresses the company’s approach to managing risks and opportunities surrounding ethical conduct of business, including fraud, corruption, bribery and facilitation payments, fiduciary responsibilities, and other behaviour that may have an ethical component. This includes sensitivity to business norms and standards as they shift over time, jurisdiction, and culture. It addresses the company’s ability to provide services that satisfy the highest professional and ethical standards of the industry, which means to avoid conflicts of interest, misrepresentation, bias, and negligence through training employees adequately and implementing policies and procedures to ensure employees provide services free from bias and error.
      None
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      None
  • Marine Transportation Remove
    Access Standard
    • GHG Emissions The category addresses direct (Scope 1) greenhouse gas (GHG) emissions that a company generates through its operations. This includes GHG emissions from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes), whether a result of combustion of fuel or non-combusted direct releases during activities such as natural resource extraction, power generation, land use, or biogenic processes. The category further includes management of regulatory risks, environmental compliance, and reputational risks and opportunities, as they related to direct GHG emissions. The seven GHGs covered under the Kyoto Protocol are included within the category—carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3).
      • Greenhouse Gas Emissions Marine transportation entities generate emissions mainly from the combustion of diesel in ship engines. The industry’s reliance on heavy fuel oil (‘bunker fuel’) is of material concern because of rising fuel costs and intensifying greenhouse gas (GHG) regulations. The industry is among the most fuel efficient of the major transportation modes in terms of fuel use per tonne shipped. However, because of the industry’s size, its contribution to the global GHG emissions is still significant. Recent environmental regulations are encouraging the adoption of more fuel-efficient engines and the use of cleaner-burning fuels. Fuel constitutes a major expense for industry players, providing a further incentive for investing in upgrades or retrofits to boost fuel efficiency.
    • Air Quality The category addresses management of air quality impacts resulting from stationary (e.g., factories, power plants) and mobile sources (e.g., trucks, delivery vehicles, planes) as well as industrial emissions. Relevant airborne pollutants include, but are not limited to, oxides of nitrogen (NOx), oxides of sulfur (SOx), volatile organic compounds (VOCs), heavy metals, particulate matter, and chlorofluorocarbons. The category does not include GHG emissions, which are addressed in a separate category.
      • Air Quality Air pollutants such as sulphur oxides (SO?), nitrogen oxides (NO?) and particulate matter (PM10) are significant environmental externalities from the use of fossil fuels by marine shipping entities. These pollutants tend to have localised environmental and health impacts and are especially a concern at port cities. Air pollution regulations are encouraging the adoption of more fuel-efficient engines and the use of cleaner-burning fuels as entities seek to reduce exposure to fines and environmental remediation costs. A further fuel efficiency incentive is that fuel constitutes a major expense for the industry, so capital expenditures to upgrade vessels may be offset over the long term from fuel costs savings.
    • Energy Management The category addresses environmental impacts associated with energy consumption. It addresses the company’s management of energy in manufacturing and/or for provision of products and services derived from utility providers (grid energy) not owned or controlled by the company. More specifically, it includes management of energy efficiency and intensity, energy mix, as well as grid reliance. Upstream (e.g., suppliers) and downstream (e.g., product use) energy use is not included in the scope.
      None
    • Ecological Impacts The category addresses management of the company’s impacts on ecosystems and biodiversity through activities including, but not limited to, land use for exploration, natural resource extraction, and cultivation, as well as project development, construction, and siting. The impacts include, but are not limited to, biodiversity loss, habitat destruction, and deforestation at all stages – planning, land acquisition, permitting, development, operations, and site remediation. The category does not cover impacts of climate change on ecosystems and biodiversity.
      • Ecological Impacts The operations and waste disposal practices of marine transportation entities may create substantial environmental externalities, such as water pollution and damage to marine life. Seagoing vessels routinely discharge ballast water, bilge water and untreated sewage. Compliance with international regulations intended to manage the ecological impacts of operation may require significant capital expenditures to upgrade or instal waste management systems. Illegal bilge water dumping and other unregulated discharges may result in hefty fines, negatively affecting an entity’s risk profile. Operating in areas of protected conservation status, such as Emission Control Areas (ECAs) and Particularly Sensitive Sea Areas (PSSAs), may increase the risk of ecological impacts as well as the risk of violating environmental regulations.
    • Employee Health & Safety The category addresses a company’s ability to create and maintain a safe and healthy workplace environment that is free of injuries, fatalities, and illness (both chronic and acute). It is traditionally accomplished through implementing safety management plans, developing training requirements for employees and contractors, and conducting regular audits of their own practices as well as those of their subcontractors. The category further captures how companies ensure physical and mental health of workforce through technology, training, corporate culture, regulatory compliance, monitoring and testing, and personal protective equipment.
      • Workforce Health & Safety Marine transportation workers face dangers such as hazardous weather and exposure to large machinery and heavy cargo. The greatest health and safety risks occur during loading and unloading cargo at ports. Ships must be loaded and unloaded quickly and on schedule, increasing injury risk, fatigue and stress. The health and well-being of workers in the industry also is linked inextricably to entity safety performance since a healthy crew is necessary for safe voyages. Entities with inadequate safety management systems that fail to ensure crew health and safety may witness increased employee turnover and worker-related expenses, including medical expenses such as insurance premiums and worker pay-outs.
    • Product Design & Lifecycle Management The category addresses incorporation of environmental, social, and governance (ESG) considerations in characteristics of products and services provided or sold by the company. It includes, but is not limited to, managing the lifecycle impacts of products and services, such as those related to packaging, distribution, use-phase resource intensity, and other environmental and social externalities that may occur during their use-phase or at the end of life. The category captures a company’s ability to address customer and societal demand for more sustainable products and services as well as to meet evolving environmental and social regulation. It does not address direct environmental or social impacts of the company’s operations nor does it address health and safety risks to consumers from product use, which are covered in other categories.
      None
    • Materials Sourcing & Efficiency The category addresses issues related to the resilience of materials supply chains to impacts of climate change and other external environmental and social factors. It captures the impacts of such external factors on operational activity of suppliers, which can further affect availability and pricing of key resources. It addresses a company’s ability to manage these risks through product design, manufacturing, and end-of-life management, such as by using of recycled and renewable materials, reducing the use of key materials (dematerialization), maximizing resource efficiency in manufacturing, and making R&D investments in substitute materials. Additionally, companies can manage these issues by screening, selection, monitoring, and engagement with suppliers to ensure their resilience to external risks. It does not address issues associated with environmental and social externalities created by operational activity of individual suppliers, which is covered in a separate category.
      None
    • Business Ethics The category addresses the company’s approach to managing risks and opportunities surrounding ethical conduct of business, including fraud, corruption, bribery and facilitation payments, fiduciary responsibilities, and other behaviour that may have an ethical component. This includes sensitivity to business norms and standards as they shift over time, jurisdiction, and culture. It addresses the company’s ability to provide services that satisfy the highest professional and ethical standards of the industry, which means to avoid conflicts of interest, misrepresentation, bias, and negligence through training employees adequately and implementing policies and procedures to ensure employees provide services free from bias and error.
      • Business Ethics Port facilitation payments are considered standard business practice in some countries to obtain permits, cargo clearance and port berths. However, anti-bribery laws place pressure on marine transportation entities to alter this practice. Enforcement of these laws may result in significant one-time costs and higher compliance costs and increased cost of capital, or affect an entity’s social licence to operate. Entity governance must monitor for and prevent corruption, participation—whether wilful or unintentional—in illegal or unethical payments, or the exertion of unfair influence. Operating in corruption-prone countries may exacerbate these risks.
    • Critical Incident Risk Management The category addresses the company’s use of management systems and scenario planning to identify, understand, and prevent or minimize the occurrence of low-probability, high-impact accidents and emergencies with significant potential environmental and social externalities. It relates to the culture of safety at a company, its relevant safety management systems and technological controls, the potential human, environmental, and social implications of such events occurring, and the long-term effects to an organization, its workers, and society should these events occur.
      • Accident & Safety Management Accidents or leaks involving large vessels can have significant impacts on life, property and the environment. Negative media attention and significant clean-up costs may impair an entity’s finances. To reduce the risk of accidents, entities conduct extensive safety measures, such as employee training programmes, periodic dry-docking maintenance periods and annual class-renewal surveys conducted by classification societies. The global marketplace’s reliance on the shipping industry means that voyages must be made within precise timeframes, providing further accident prevention incentives.

Select up to 4 industries

Current Industries:
Industrial Machinery & Goods
|
Marine Transportation
Resource Transformation
Transportation
Consumer Goods
Extractives & Minerals Processing
Financials
Food & Beverage
Health Care
Infrastructure
Renewable Resources & Alternative Energy
Services
Technology & Communications